欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情
如圖,四棱錐P-ABCD的底面是邊長為1的正方形,側棱PA⊥底面ABCD,且PA=2,E是側棱PA上的動點.
(1)求四棱錐P-ABCD的體積;
(2)如果E是PA的中點,求證:PC∥平面BDE;
(3)是否不論點E在側棱PA的任何位置,都有BD⊥CE?證明你的結論.
分析:(1)利用四棱錐的體積計算公式即可;
(2)利用三角形的中位線定理和線面平行的判定定理即可證明;
(3)利用線面垂直的判定和性質即可證明.
解答:解:(1)∵PA⊥底面ABCD,∴PA為此四棱錐底面上的高.
∴V四棱錐P-ABCD=
1
3
S正方形ABCD×PA
=
1
3
×12×2=
2
3

(2)連接AC交BD于O,連接OE.
∵四邊形ABCD是正方形,∴AO=OC,
又∵AE=EP,∴OE∥PC.
又∵PC?平面BDE,OE?平面BDE.
∴PC∥平面BDE.
(3)不論點E在側棱PA的任何位置,都有BD⊥CE.
證明:∵四邊形ABCD是正方形,∴BD⊥AC.
∵PA⊥底面ABCD,∴PA⊥BD.
又∵PA∩AC=A,
∴BD⊥平面PAC.
∵CE?平面PAC.
∴BD⊥CE.
點評:熟練掌握線面平行、垂直的判定和性質定理及四棱錐的體積計算公式是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中點.求證:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,側面PAD⊥底面ABCD,且△PAD為等腰直角三角形,∠APD=90°,M為AP的中點.
(1)求證:AD⊥PB;
(2)求三棱錐P-MBD的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且側面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求證:PD⊥AC;
(2)在棱PA上是否存在一點E,使得二面角E-BD-A的大小為45°,若存在,試求
AE
AP
的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,點F是PB中點.
(Ⅰ)若E為BC中點,證明:EF∥平面PAC;
(Ⅱ)若E是BC邊上任一點,證明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直線PA與平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,四棱錐P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,設PC與AD的夾角為θ.
(1)求點A到平面PBD的距離;
(2)求θ的大。划斊矫鍭BCD內有一個動點Q始終滿足PQ與AD的夾角為θ,求動點Q的軌跡方程.

查看答案和解析>>

同步練習冊答案