如圖,正三棱錐
的三條側(cè)棱
、
、
兩兩垂直,且長度均為2.
、
分別是
、
的中點,
是
的中點,過
的平面與側(cè)棱
、
、
或其延長線分別相交于
、
、
,已知
.
(1)求證:
⊥面
;
(2)求二面角
的大小.
![]()
(1)同解析(2)二面角
為
。
(1)證明:依題設(shè),
是
的中位線,所以
∥
,
則
∥平面
,所以
∥
。
又
是
的中點,所以
⊥
,
則
⊥
。
因為
⊥
,
⊥
,
所以
⊥面
,則
⊥
,
因此
⊥面
。
![]()
(2)作
⊥
于
,連
。
因為
⊥平面
,
根據(jù)三垂線定理知,
⊥
,
就是二面角
的平面角。
作
⊥
于
,則
∥
,則
是
的中點,則
。
設(shè)
,由
得,
,解得
,
在
中,
,則,
。
所以
,故二面角
為
。
解法二:(1)以直線
分別為
軸,建立空間直角坐標(biāo)系,
則
所以![]()
所以
所以
平面
由
∥
得
∥
,故:
平面
![]()
(2)由已知
設(shè)![]()
則![]()
由
與
共線得:存在
有
得
![]()
同理:
![]()
設(shè)
是平面
的一個法向量,
則
令
得![]()
![]()
又
是平面
的一個法量
所以二面角的大小為
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
如圖,正三棱錐
的三條側(cè)棱
、
、
兩兩垂直,且長度均為2.
、
分別是
、
的中點,
是
的中點,過
作平面與側(cè)棱
、
、
或其延長線分別相交于
、
、
,已知
。
(1)求證:
⊥平面
;
(2)求二面角
的大小。
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2008年普通高等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)文科(江西卷) 題型:解答題
如圖,正三棱錐
的三條側(cè)棱
、
、
兩兩垂直,且長度均為2.
、
分別是
、
的中點,
是
的中點,過
的平面與側(cè)棱
、
、
或其延長線分別相交于
、
、
,已知
.
(1)求證:
⊥面
;
(2)求二面角
的大小.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2008年普通高等學(xué)校招生全國統(tǒng)一考試理科數(shù)學(xué)(江西卷) 題型:選擇題
(本小題滿分12分)
如圖,正三棱錐
的三條側(cè)棱
、
、
兩兩垂直,且長度均為2.
、
分別是
、
的中點,
是
的中點,過
作平面與側(cè)棱
、
、
或其延長線分別相交于
、
、
,已知
。
(1)求證:
⊥平面
;
(2)求二面角
的大小。
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2008年普通高等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)文科(江西卷) 題型:解答題
如圖,正三棱錐
的三條側(cè)棱
、
、
兩兩垂直,且長度均為2.
、
分別是
、
的中點,
是
的中點,過
的平面與側(cè)棱
、
、
或其延長線分別相交于
、
、
,已知
.
(1)求證:
⊥面
;
(2)求二面角
的大。
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com