【題目】已知函數(shù)f(x)=
且x>0).若存在實(shí)數(shù)p,q(p<q),使得f(x)≤0的解集恰好為[p,q],則a的取值范圍是( )
A.(0,
]
B.(一∞,
]
C.(0,
)
D.(一∞,
)
【答案】C
【解析】解:當(dāng)a=0時(shí),f(x)=﹣e﹣x<0,則不存在f(x)≤0的解集恰為[p,q], 當(dāng)a<0時(shí),f(x)<0,此時(shí)函數(shù)f(x)單調(diào)遞增,則不存在f(x)≤0的解集恰為[p,q],
當(dāng)a>0時(shí),由f(x)≤0得
≤e﹣x ,
當(dāng)x>0時(shí),不等式等價(jià)為a≤
,
設(shè)g(x)=
,
則g′(x)=
,
當(dāng)x>1時(shí),g′(x)<0,
當(dāng)0<x<1時(shí),g′(x)>0,
即當(dāng)x=1時(shí),g(x)取得極大值,同時(shí)也是最大值g(1)=
,
∴若存在實(shí)數(shù)p,q,使得f(x)≥0的解集恰為[p,q],
則必有a<
,
即0<a<
,
故選:C.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=2,BC=
AD=1,CD=
. ![]()
(1)求證:平面MQB⊥平面PAD;
(2)若二面角M﹣BQ﹣C大小的為60°,求QM的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|<
)的最小正周期是π,若其圖象向右平移
個(gè)單位后得到的函數(shù)為奇函數(shù),則函數(shù)y=f(x)的圖象( )
A.關(guān)于點(diǎn)(
,0)對稱?
B.關(guān)于直線x=
對稱
C.關(guān)于點(diǎn)(
,0)對稱?
D.關(guān)于直線x=
對稱
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱錐P﹣ABC中,PC⊥平面ABC,PC=3,∠ACB=
.D,E分別為線段AB,BC上的點(diǎn),且CD=DE=
,CE=2EB=2.![]()
(Ⅰ)證明:DE⊥平面PCD
(Ⅱ)求二面角A﹣PD﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有半徑為R、圓心角(∠AOB)為90°的扇形材料,要裁剪出一個(gè)五邊形工件OECDF,如圖所示.其中E,F(xiàn)分別在OA,OB上,C,D在
上,且OE=OF,EC=FD,∠ECD=∠CDF=90°.記∠COD=2θ,五邊形OECDF的面積為S. ![]()
(1)試求S關(guān)于θ的函數(shù)關(guān)系式;
(2)求S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
=1(a>b>0)的長軸長為4,離心率為
,右焦點(diǎn)為F.
(1)求橢圓C的方程;
(2)直線l與橢圓C相切于點(diǎn)P(不為橢圓C的左、右頂點(diǎn)),直線l與直線x=2交于點(diǎn)A,直線l與直線x=﹣2交于點(diǎn)B,請問∠AFB是否為定值?若不是,請說明理由;若是,請證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=kx, ![]()
(1)求函數(shù)
的單調(diào)遞增區(qū)間;
(2)若不等式f(x)≥g(x)在區(qū)間(0,+∞)上恒成立,求k的取值范圍;
(3)求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|cosx|sinx,給出下列四個(gè)說法: ①
;
②函數(shù)f(x)的周期為π;
③f(x)在區(qū)間
上單調(diào)遞增;
④f(x)的圖象關(guān)于點(diǎn)
中心對稱
其中正確說法的序號是( )
A.②③
B.①③
C.①④
D.①③④
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com