| A. | l∥α,m∥α,則l∥m | B. | l⊥α,m⊥α,則l∥m | C. | l⊥n,m⊥n,則l∥m | D. | l?α,m∥α,則l∥m |
分析 在A中,l與m相交、平行或異面;在B 中,由直線與平面垂直的性質(zhì)定理得l∥m;在C中,l與m相交、平行或異面;在D中,l與m平行或異面.
解答 解:由三條不重合的直線l,m,n與平面α,知:
在A中,l∥α,m∥α,則l與m相交、平行或異面,故A錯誤;
在B中,l⊥α,m⊥α,則由直線與平面垂直的性質(zhì)定理得l∥m,故B正確;
在C中,l⊥n,m⊥n,則l與m相交、平行或異面,故C錯誤;
在D中,l?α,m∥α,則l與m平行或異面,故D錯誤.
故選:B.
點評 本題考查命題真假的判斷,是中檔題,解題時要認真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 128 | B. | 81 | C. | 64 | D. | 49 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{9}{4}$ | B. | $-\frac{9}{4}$ | C. | $\frac{1}{4}$ | D. | $-\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 4 | B. | $\frac{1}{4}$ | C. | $\frac{6}{5}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $x=\frac{π}{3}$ | B. | $x=\frac{2π}{3}$ | C. | $x=\frac{5π}{12}$ | D. | $x=\frac{7π}{12}$ |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com