如圖,已知直線
與拋物線
相交于
兩點,
與
軸相交于點
,若
.
(1)求證:
點的坐標為(1,0);
(2)求△AOB的面積的最小值.
解: (1) 設M點的坐標為(x0, 0), 直線l方程為 x = my + x0 ,
代入y2 = x得 y2-my-x0 = 0 ① y1、y2是此方程的兩根,
∴ x0 =-y1y2 =1,即M點的坐標為(1, 0)------------------------------------------------7分
(2)法一:
由方程①得y1+y2 = m ,y1y2 =-1 ,且 | OM | = x0 =1,
于是S△AOB =
|
OM | |y1-y2| =
=
≥1,
∴ 當m = 0時,△AOB的面積取最小值1. ----------------------------------------14分
法二:(不妨設y1>y2)
![]()
![]()
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年浙江省桐鄉(xiāng)市高三10月月考文科數(shù)學 題型:填空題
22.(本題滿分15分)已知拋物線C的頂點在原點,焦點在y軸正半軸上,點
到其準線的距離等于5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)如圖,過拋物線C的焦點的直線從左到右依次與拋物線C及圓
交于A、C、D、B四點,試證明
為定值;
|
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年山東省濟寧市高三第二次月考文科數(shù)學 題型:解答題
(本題滿分18分)已知拋物線C的頂點在原點,焦點在y軸正半軸上,點
到其準線的距離等于5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)如圖,過拋物線C的焦點的直線從左到右依次與拋物線C及圓
交于A、C、D、B四點,試證明
為定值;
(Ⅲ)過A、B分別作拋物C的切線
且
交于點M,求
與
面積之和的最小值.
![]()
查看答案和解析>>
科目:高中數(shù)學 來源:山東省月考題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分15分)
已知拋物線G的頂點在原點,焦點在y軸正半軸上,點P(m,4)到其準線的距離等于5。
(I)求拋物線G的方程;
(II)如圖,過拋物線G的焦點的直線依次與拋物線G及圓
交于A、C、D、B四點,試證明
為定值;
|
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com