(1)已知:
,求函數(shù)f(x)的單調(diào)區(qū)間和值域;
(2)a≥1,函數(shù)g(x)=x3-3a2x-2a,x∈[0,1],判斷函數(shù)g(x)的單調(diào)性并予以證明;
(3)當(dāng)a≥1時,上述(1)、(2)小題中的函數(shù)f(x)、g(x),若對任意x1∈[0,1],總存在x2∈[0,1],使得g(x2)=f(x1)成立,求a的取值范圍.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆吉林省高一下學(xué)期3月月考數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在平面直角坐標(biāo)系中,銳角
和鈍角
的終邊分別與單位圓交于
,
兩點(diǎn).
(1)如果
、
兩點(diǎn)的縱坐標(biāo)分別為
、
,求
和
;
(2)在(1)的條件下,求
的值;
(3)已知點(diǎn)![]()
,求函數(shù)f(
)=
的值域.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分18分)第1小題4分,第2小題4分,第3小題4分.
(1)已知:,求函數(shù)的單調(diào)區(qū)間和值域;
(2),函數(shù),判斷函數(shù)的單調(diào)性并予以證明;
(3)當(dāng)時,上述(1)、(2)小題中的函數(shù),若對任意,總存在,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分18分)第1小題4分,第2小題4分,第3小題4分.
(1)已知:,求函數(shù)的單調(diào)區(qū)間和值域;
(2),函數(shù),判斷函數(shù)的單調(diào)性并予以證明;
(3)當(dāng)時,上述(1)、(2)小題中的函數(shù),若對任意,總存在,使得成立,求的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com