【題目】如圖,已知在四棱錐
中,平面
平面
,且
,
,
,
,
,
為
的中點(diǎn).
![]()
(Ⅰ)證明:
平面
;
(Ⅱ)求三棱錐
的體積.
【答案】(Ⅰ)見解析(Ⅱ)
.
【解析】試題分析:
(1)取
的中點(diǎn)
,連接
.由幾何關(guān)系可證得四邊形
為平行四邊形,則
,利用線面平行的判斷定理可得
平面
.
(2)由題意可得點(diǎn)
到平面
的距離是點(diǎn)
到平面
的距離的兩倍,則
.利用梯形的性質(zhì)可得
.
取
的中點(diǎn)
,由線面垂直的判斷定理可得
平面
,則點(diǎn)
到平面
的距離即為
.最后利用棱錐的體積公式可得
.
試題解析:
(Ⅰ)取
的中點(diǎn)
,連接
.
在
中,
為中位線,則
,又
,故
,
則四邊形
為平行四邊形,得
,又
平面
,
平面
,則
平面
.
![]()
(Ⅱ)由
為
的中點(diǎn),知點(diǎn)
到平面
的距離是點(diǎn)
到平面
的距離的兩倍,則
.
由題意知,四邊形
為等腰梯形,且
,
,易求其高為
,則
.
取
的中點(diǎn)
,在等腰直角
中,有
,
,又平面
平面
,故
平面
,則點(diǎn)
到平面
的距離即為
.
于是,
,
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知曲線
的參數(shù)方程為
(
為參數(shù)),點(diǎn)
是曲線
上的一動點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,直線
的方程為
.
(Ⅰ)求線段
的中點(diǎn)
的軌跡的極坐標(biāo)方程;
(Ⅱ)求曲線
上的點(diǎn)到直線
的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)若
恒成立,試確定實(shí)數(shù)
的取值范圍;
(3)證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖在棱錐
中,
為矩形,
面
,
,
與面
成
角,
與面
成
角.
(1)在
上是否存在一點(diǎn)
,使
面
,若存在確定
點(diǎn)位置,若不存在,請說明理由;
(2)當(dāng)
為
中點(diǎn)時,求二面角
的余弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了準(zhǔn)確把握市場,做好產(chǎn)品計劃,特對某產(chǎn)品做了市場調(diào)查:先銷售該產(chǎn)品50天,統(tǒng)計發(fā)現(xiàn)每天的銷售量
分布在
內(nèi),且銷售量
的分布頻率
.
(Ⅰ)求
的值并估計銷售量的平均數(shù);
(Ⅱ)若銷售量大于等于70,則稱該日暢銷,其余為滯銷.在暢銷日中用分層抽樣的方法隨機(jī)抽取8天,再從這8天中隨機(jī)抽取3天進(jìn)行統(tǒng)計,設(shè)這3天來自
個組,求隨機(jī)變量
的分布列及數(shù)學(xué)期望(將頻率視為概率).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知不等式|y+4|-|y|≤2x+
對任意實(shí)數(shù)x,y都成立,則常數(shù)a的最小值為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1:y=cosx,C2:y=sin(2x+
),則下面結(jié)論正確的是( 。
A. 把C1上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移
個單位長度,得到曲線C2
B. 把C1上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移
個單位長度,得到曲線C2
C. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來的
倍,縱坐標(biāo)不變,再把得到的曲線向右平移
個單位長度,得到曲線C2
D. 把C1上各點(diǎn)的橫坐標(biāo)縮短到原來的
倍,縱坐標(biāo)不變,再把得到的曲線向左平移
個單位長度,得到曲線C2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:
,
,圓
:
的圓心到直線
的距離為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線
與圓
相切,且與橢圓C相交于
兩點(diǎn),求
的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com