欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,且過點M(-2,0).
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設直線l:x=ky+1與橢圓C相交于A(x1,y1),B(x2,y2)兩點,連接MA,MB交直線x=4于P,Q兩點,yP,yQ分別為P、Q的縱坐標,求證:$\frac{1}{{y}_{1}}$+$\frac{1}{{y}_{2}}$=$\frac{1}{{y}_{P}}$+$\frac{1}{{y}_{Q}}$.

分析 (Ⅰ)由橢圓的離心率為$\frac{\sqrt{2}}{2}$,且過點M(-2,0),列出方程組,能求出橢圓C的標準方程.
(Ⅱ)由題意得MA的方程為y=$\frac{{y}_{1}}{{x}_{1}+2}$(x+2),從而yP=$\frac{6{y}_{1}}{{x}_{1}+2}$,同理,${y}_{Q}=\frac{6{y}_{2}}{{x}_{2}+2}$,由$\left\{\begin{array}{l}{x=ky+1}\\{{x}^{2}+2{y}^{2}=4}\end{array}\right.$,得(k2+2)y2+2ky-3=0,由此利用根的判別式、韋達定理、橢圓性質(zhì),結(jié)合已知條件能證明$\frac{1}{{y}_{1}}$+$\frac{1}{{y}_{2}}$=$\frac{1}{{y}_{P}}$+$\frac{1}{{y}_{Q}}$.

解答 解:(Ⅰ)∵橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,且過點M(-2,0),
∴$\left\{\begin{array}{l}{a=2}\\{e=\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,解得a=2,c=$\sqrt{2}$,b=$\sqrt{2}$,
∴橢圓C的標準方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$=1.
證明:(Ⅱ)由題意得MA的方程為y=$\frac{{y}_{1}}{{x}_{1}+2}$(x+2),
∴yP=$\frac{6{y}_{1}}{{x}_{1}+2}$,同理,${y}_{Q}=\frac{6{y}_{2}}{{x}_{2}+2}$,
由$\left\{\begin{array}{l}{x=ky+1}\\{{x}^{2}+2{y}^{2}=4}\end{array}\right.$,得(k2+2)y2+2ky-3=0,
△=4k2+12(k2+2)>0,
${y}_{1}+{y}_{2}=\frac{-2k}{{k}^{2}+2}$,y1y2=$\frac{-3}{{k}^{2}+2}$,
∴$\frac{1}{{y}_{1}}$+$\frac{1}{{y}_{2}}$=$\frac{{y}_{1}+{y}_{2}}{{y}_{1}{y}_{2}}$=$\frac{\frac{-3k}{{k}^{2}+2}}{\frac{-3}{{k}^{2}+2}}$=$\frac{2k}{3}$,
$\frac{1}{{y}_{P}}$+$\frac{1}{{y}_{Q}}$=$\frac{{x}_{1}+2}{6{y}_{1}}+\frac{{x}_{2}+2}{6{y}_{2}}$
=$\frac{{y}_{2}({x}_{1}+2)+{y}_{1}({x}_{2}+2)}{6{y}_{1}{y}_{2}}$
=$\frac{2k{y}_{1}{y}_{2}+3({y}_{1}+{y}_{2})}{6{y}_{1}{y}_{2}}$
=$\frac{k}{3}+\frac{{y}_{1}+{y}_{2}}{2{y}_{1}{y}_{2}}$
=$\frac{2k}{3}$.
∴$\frac{1}{{y}_{1}}$+$\frac{1}{{y}_{2}}$=$\frac{1}{{y}_{P}}$+$\frac{1}{{y}_{Q}}$.

點評 本題考查橢圓標準方程的求法,考查等式的證明,是中檔題,解題時要認真審題,注意橢圓性質(zhì)、根的判別式、韋達定理的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.襄陽市某優(yōu)質(zhì)高中為了選拔學生參加“全國中學生英語能力競賽(NEPCS)”,先在本校進行初賽(滿分150分),若該校有100名學生參加初賽,并根據(jù)初賽成績得到如圖所示的頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,計算這100名學生參加初賽成績的中位數(shù);
(2)該校推薦初賽成績在110分以上的學生代表學校參加競賽,為了了解情況,在該校推薦參加競賽的學生中隨機抽取2人,求選取的兩人的初賽成績在頻率分布直方圖中處于不同組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.專家由圓x2+y2=a2的面積S=πa2通過類比推理猜想橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的面積S=πab,之后利用演繹推理證明了這個公式是對的!在平面直角坐標系中,點集A={(x,y)|$\frac{{x}^{2}}{4}$+y2≤1},點集B={(x,y)|-3<x<3,-1<y<5},則點集M={(x,y)|x=x1+x2,y=y1+y2,(x1,y1)∈A,(x2,y2)∈B}所表示的區(qū)域的面積為36+2π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.求證:當一個圓和一個正方形的周長相等時,圓的面積比正方形的面積大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.函數(shù)y=3sin(2x+$\frac{π}{4}$)的圖象向左平移φ(0<φ<$\frac{π}{2}$)個單位后,所得到函數(shù)圖象關于原點對稱,則φ=$\frac{3π}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.我國發(fā)射的天宮一號飛行器需要建造隔熱層.已知天宮一號建造的隔熱層必須使用20年,每厘米厚的隔熱層建造成本是6萬元,天宮一號每年的能源消耗費用C(萬元)與隔熱層厚度x(厘米)滿足關系式:C(x)=$\frac{k}{3x+8}$(0≤x≤10),若無隔熱層(即x=0),則每年能源消耗費用為5萬元.設f(x)為隔熱層建造費用與使用20年的能源消耗費用之和.
(1)求C(x)和f(x)的表達式;
(2)當隔熱層修建多少厘米厚時,總費用f(x)最小,并求出最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b≥1})$的離心率$\frac{{\sqrt{2}}}{2}$,其右焦點到直線2ax+by-$\sqrt{2}$=0的距離為$\frac{{\sqrt{2}}}{3}$.
(I)求橢圓C1的方程;
(Ⅱ)過點P$({0,-\frac{1}{3}})$的直線l交橢圓C1于A、B兩點.
(i)證明:線段AB的中點G恒在橢圓C2:$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{^{2}}$=1的內(nèi)部;
(ii)判斷以AB為直徑的圓是否恒過定點?若是,求出該定點坐標;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.在等差數(shù)列{an}中,a1=-2016,其前n項和為Sn,若$\frac{{{S_{20}}}}{20}-\frac{{{S_{18}}}}{18}$=2,則S2016的值等于-2016.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知P1、P2是平面內(nèi)的兩點,當k∈N*時,P2k+1是P2k關于點P1的對稱點,P2k+2是P2k+1關于點P2的對稱點,若P1P2=1,則P2016P2017=4030.

查看答案和解析>>

同步練習冊答案