欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

3.已知函數(shù)f(x)=$\frac{1}{3}$x3-2ax2+3a2x-2.
(1)若的單調(diào)遞減區(qū)間為(-3,-1),求a的值;
(2)若f(x)在(0,2a)上有兩個零點,求a3的取值范圍.

分析 (1)先求導,再根據(jù)函數(shù)的單調(diào)區(qū)間,即可求出a的值;
(2)根據(jù)函數(shù)的零點判定定理,即可求出a的值范圍.

解答 解:(1)∵f(x)=$\frac{1}{3}$x3-2ax2+3a2x-2,
∴f′(x)=x2-4ax+3a2=(x-3a)(x-a),
∵函數(shù)f(x)的單調(diào)遞減區(qū)間為(-3,-1),
∴$\left\{\begin{array}{l}{3a=-3}\\{a=-1}\end{array}\right.$,
即a=-1;
(2)∵f(x)在(0,2a)上有兩個零點,
∴a>0,且$\left\{\begin{array}{l}{f(a)>0}\\{f(2a)<0}\end{array}\right.$,
解得$\frac{3}{2}<{a}^{3}<3$
故a3的取值范圍為($\frac{3}{2}$,3)

點評 本題考查了應用導數(shù)研究函數(shù)的單調(diào)性、零點以及函數(shù)在閉區(qū)間上的最值問題,同時考查分析問題、解決問題的能力以及分類討論的數(shù)學思想.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.已知Sn為數(shù)列{an}的前n項和,Sn=nan-3n(n-1),(n∈N*),且a2=11.
(1)求a1的值;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.在等腰△ABC中,∠BAC=90°,AB=AC=2,$\overrightarrow{BC}=2\overrightarrow{BD}$,$\overrightarrow{AC}=3\overrightarrow{AE}$,則$\overrightarrow{AD}•\overrightarrow{BE}$的值為( 。
A.$-\frac{4}{3}$B.$-\frac{1}{3}$C.$\frac{1}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知U=R,A={x|x2≤1},B={x|y=lnx},則∁U(A∪B)=(  )
A.(-∞,0)(1,+∞)B.(-∞,0)(1,+∞)C.(-∞,-1)D.(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.如圖所示的程序框圖的輸出結(jié)果是( 。
A.2B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.若cos2(α+$\frac{π}{4}$)=$\frac{1}{6}$,則sin2α=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右頂點為拋物線y2=8x的焦點,橢圓的離心率為$\frac{\sqrt{3}}{2}$,直線l過點E(-1,0)且與橢圓C交于M,N兩點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)△MON的面積是否存在最大值,若存在,求出△MON面積的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知數(shù)列{an}的前n項和為Sn,滿足a1=2,Sn+2=2an,n∈N+
(Ⅰ)求an;
(Ⅱ)求證$\frac{{a}_{1}}{({a}_{1}+1)({a}_{2}+1)}+\frac{{a}_{2}}{({a}_{2}+1)({a}_{3}+1)}$+…+$\frac{{a}_{n}}{({a}_{n}+1)({a}_{n+1}+1)}<\frac{1}{3}$
(Ⅲ)設(shè)b1,b2,…,b2015是數(shù)列a1,a2,…,a2015的任意一個排列,求(${a}_{1}+\frac{1}{_{1}}$)$({a}_{2}+\frac{1}{_{2}})…({a}_{2015}+\frac{1}{_{2015}})$的最大值,并說明何時取到等號.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.若銳角三角形ABC的面積是$\frac{3}{2}\sqrt{3}$,AB=2,AC=3,則BC=$\sqrt{7}$.

查看答案和解析>>

同步練習冊答案