分析 (1)設橢圓的標準方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),可得$e=\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,b=1,a2=b2+c2,聯(lián)立解出即可得出;
(2)設P(m,yP),A(-2,0),B(2,0),N(x1,y1),M(x2,y2).由于以MN為直徑的圓恒經過點A,不妨設直線AM、AN的方程為:ky=x+2,-$\frac{1}{k}$y=x+2,k≠0.聯(lián)立$\left\{\begin{array}{l}{ky=x+2}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$,解得M坐標.可得直線BM的方程,令x=m,解得yP.由直線AN的方程,令x=m,解得yP,進而解出m.
解答 解:(1)設橢圓的標準方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),∵$e=\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,b=1,a2=b2+c2,
解得b=1,a=2,c=$\sqrt{3}$.
∴橢圓C的方程為$\frac{{x}^{2}}{4}+{y}^{2}$=1.
(2)設P(m,yP),A(-2,0),B(2,0),N(x1,y1),M(x2,y2).
∵以MN為直徑的圓恒經過點A,
∴不妨設直線AM、AN的方程為:ky=x+2,-$\frac{1}{k}$y=x+2,k≠0.
聯(lián)立$\left\{\begin{array}{l}{ky=x+2}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$,
化為:(k2+4)y2-4ky=0,
解得yM=$\frac{4k}{{k}^{2}+4}$,xM=kyM-2=$\frac{2{k}^{2}-8}{{k}^{2}+4}$.
直線BM的方程為:y=$\frac{\frac{4k}{{k}^{2}+4}}{\frac{2{k}^{2}-8}{{k}^{2}+4}-2}$(x-2),化為y=-$\frac{k}{4}$(x-2),
令x=m,解得yP=$\frac{-k(m-2)}{4}$.
由-$\frac{1}{k}$y=x+2,令x=m,解得yP=k(m+2).
∴$\frac{-k(m-2)}{4}$=-k(m+2),k≠0.
解得m=$-\frac{10}{3}$.
點評 本題考查了橢圓的標準方程及其性質、直線與橢圓相交問題、圓的性質、直線方程,考查了數形結合方法、推理能力與計算能力,屬于難題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com