欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

8.在△ABC中,BC=$\sqrt{6}$,AB=2,1+$\frac{tanA}{tanB}$=$\frac{2AB}{AC}$,則AC=( 。
A.$\sqrt{6}$-1B.1+$\sqrt{6}$C.$\sqrt{3}$-1D.1+$\sqrt{3}$

分析 1+$\frac{tanA}{tanB}$=$\frac{2AB}{AC}$,可得$\frac{sin(A+B)}{sinBcosA}$=$\frac{2c}$,即$\frac{sinC}{sinBcosA}$=$\frac{2c}$,利用正弦定理化為:cosA=$\frac{1}{2}$,A∈(0,π),可得A,再利用余弦定理即可得出.

解答 解:∵1+$\frac{tanA}{tanB}$=$\frac{2AB}{AC}$,∴$\frac{sin(A+B)}{sinBcosA}$=$\frac{2c}$,∴$\frac{sinC}{sinBcosA}$=$\frac{2c}$,
∴$\frac{1}{cosA}$=2,即cosA=$\frac{1}{2}$,A∈(0,π),
解得A=$\frac{π}{3}$.
由余弦定理可得:$(\sqrt{6})^{2}$=22+b2-4bcos$\frac{π}{3}$,
∴b2-2b-2=0,
解得b=1+$\sqrt{3}$.
故選:D.

點評 本題考查了正弦定理余弦定理、和差公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=2f(2-x)-x2+5x-5,則曲線y=f(x)在點(1,f(1))處的切線方程為( 。
A.y=xB.y=-2x+3C.y=-3x+4D.y=x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在△ABC中,內(nèi)角A、B、C所對的邊分別為a、b、c,acosB=bcosA,4S=2a2-c2,其中S是△ABC的面積,則C的大小為$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.5件產(chǎn)品中混有2件次品,現(xiàn)用某種儀器依次檢驗,找出次品.
(I)求檢驗3次完成檢驗任務(wù)的概率;
(II)由于正品和次品對儀器的損傷程度不同,在一次檢驗中,若是正品需費用100元,次品則需200元,設(shè)X是完成檢驗任務(wù)的費用,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知雙曲線$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1(a>0,b>0)$的離心率為$\sqrt{3}$,則該雙曲線的漸近線方程為( 。
A.$x-\sqrt{2}y=0$B.$\sqrt{2}x-y=0$C.$\sqrt{2}x±y=0$D.$x±\sqrt{2}y=0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知命題p:?x∈R,x2-mx+1=0,q:?x∈R,ex-m>0,若¬p∧q為真,則實數(shù)m的取值范圍是( 。
A.[-2,2]B.(-2,0]C.(-2,0)D.[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.焦點在坐標軸,中心在原點的雙曲線的漸近線過點(3,-4),則雙曲線的離心率為$\frac{5}{3}$或$\frac{5}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知△ABC中,AC=4,BC=2$\sqrt{7},∠BAC=\frac{π}{3}$,則AB的長為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在二項式(2x+a)5的展開式中,含x2項的系數(shù)等于320,則$\int_1^a{({{e^x}+2x})}dx$=( 。
A.e2-e+3B.e2+4C.e+1D.e+2

查看答案和解析>>

同步練習(xí)冊答案