分析 由題意利用勾股定理可得${(\frac{T}{4})}^{2}$+${(\sqrt{3})}^{2}$+${(\frac{3T}{4})}^{2}$+${(\sqrt{3})}^{2}$=${(\frac{T}{2})}^{2}$+${(2\sqrt{3})}^{2}$,由此求得周期T的值.
解答 解:由題意可得∠AOB=$\frac{π}{2}$,∴由勾股定理可得 ${(\frac{T}{4})}^{2}$+${(\sqrt{3})}^{2}$+${(\frac{3T}{4})}^{2}$+${(\sqrt{3})}^{2}$=${(\frac{T}{2})}^{2}$+${(2\sqrt{3})}^{2}$,
求得T=4,
故答案為:4.
點(diǎn)評 本題主要考查正弦函數(shù)的周期性和最值,勾股定理的應(yīng)用,屬于基礎(chǔ)題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (0,$\frac{\sqrt{2}}{2}$) | B. | ($\frac{\sqrt{2}}{2}$,1) | C. | (1,$\sqrt{2}$) | D. | ($\sqrt{2}$,2) |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com