欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

設(shè)數(shù)列{an}滿足a1=1,an+1=3an,數(shù)列{bn}的前n項和Sn=n2+2n+1.
(I)求數(shù)列{an},{bn}的通項公式;
(II)設(shè)cn=anbn,求數(shù)列{cn}的前n項和Tn
分析:(I)首先根據(jù)an+1=3an可知數(shù)列{an}是公比為3的等比數(shù)列,然后根據(jù)公比和首項即可求出{an}的通項公式;當(dāng)n≥2時,根據(jù)bn=Sn-Sn-1求通項公式,然后驗證b1=S1=4,不符合上式,因此數(shù)列{bn}是分段數(shù)列;
(Ⅱ)先寫出數(shù)列{cn}的通項公式,然后計算出Tn-3Tn,進而求出Tn
解答:解:(Ⅰ)由題意知數(shù)列{an}是首項為1,公比為3的等比數(shù)列,其通項公式為an=3n-1;
數(shù)列{bn}滿足b1=S1=4,n≥2時,bn=Sn-Sn-1=2n+1.所以,數(shù)列{bn}的通項公式為bn=
4,(n=1)
2n+1.(n≥2)
(6分)
(Ⅱ)由(Ⅰ)知cn=anbn=
4,(n=1)
(2n+1)•3n-1,(n≥2)

Tn=4+5•3+7•32+…+(2n+1)•3n-1∴3Tn=12+5•32+7•33+9•34+…+(2n+1)•3n,(8分)
兩式相減得-2Tn=7+2(32+33+34++3n-1)-(2n+1)•3n=7+2
9(3n-2-1)
3-1
-(2n+1)•3n=-2-2n•3n

所以Tn=n•3n+1,(n≥2),
綜上,數(shù)列{cn}的前n項和Tn=n•3n+1,(n∈N+).(12分)
點評:本題主要考查了數(shù)列通項公式以及數(shù)列的前n項和的求法,對于等差數(shù)列與等比數(shù)列乘積形式的數(shù)列,一般采取錯位相減的方法求數(shù)列的前n項和,這種方法要熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足a1=1,且對任意的n∈N*,點Pn(n,an)都有
.
PnPn+1
=(1,2)
,則數(shù)列{an}的通項公式為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•日照一模)若數(shù)列{bn}:對于n∈N*,都有bn+2-bn=d(常數(shù)),則稱數(shù)列{bn}是公差為d的準(zhǔn)等差數(shù)列.如:若cn=
4n-1,當(dāng)n為奇數(shù)時
4n+9,當(dāng)n為偶數(shù)時.
則{cn}
是公差為8的準(zhǔn)等差數(shù)列.
(I)設(shè)數(shù)列{an}滿足:a1=a,對于n∈N*,都有an+an+1=2n.求證:{an}為準(zhǔn)等差數(shù)列,并求其通項公式:
(Ⅱ)設(shè)(I)中的數(shù)列{an}的前n項和為Sn,試研究:是否存在實數(shù)a,使得數(shù)列Sn有連續(xù)的兩項都等于50.若存在,請求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•日照一模)若數(shù)列{bn}:對于n∈N*,都有bn+2-bn=d(常數(shù)),則稱數(shù)列{bn}是公差為d的準(zhǔn)等差數(shù)列.如數(shù)列cn:若cn=
4n-1,當(dāng)n為奇數(shù)時
4n+9,當(dāng)n為偶數(shù)時
,則數(shù)列{cn}是公差為8的準(zhǔn)等差數(shù)列.設(shè)數(shù)列{an}滿足:a1=a,對于n∈N*,都有an+an+1=2n.
(Ⅰ)求證:{an}為準(zhǔn)等差數(shù)列;
(Ⅱ)求證:{an}的通項公式及前20項和S20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足a1=1,a2+a4=6,且對任意n∈N*,函數(shù)f(x)=(an-an+1+an+2)x+an+1?cosx-an+2sinx滿足f′(
π
2
)=0
cn=an+
1
2an
,則數(shù)列{cn}的前n項和Sn為(  )
A、
n2+n
2
-
1
2n
B、
n2+n+4
2
-
1
2n-1
C、
n2+n+2
2
-
1
2n
D、
n2+n+4
2
-
1
2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足:a1=2,an+1=1-
1
an
,令An=a1a2an,則A2013
=( 。

查看答案和解析>>

同步練習(xí)冊答案