欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

17.已知函數(shù)$f(x)=cos(ωx+φ-\frac{π}{2})(ω>0\;,\;|φ|<\frac{π}{2})$的部分圖象如圖所示,則$y=f(x+\frac{π}{6})$取得最小值時x的集合為( 。
A.$\{x|x=2kπ-\frac{π}{3}\;,\;k∈Z\}$B.$\{x|x=2kπ-\frac{π}{6}\;,\;k∈Z\}$C.$\{x|x=kπ-\frac{π}{3}\;,\;k∈Z\}$D.$\{x|x=kπ-\frac{π}{6}\;,\;k∈Z\}$

分析 由周期求出ω,由五點法作圖求出φ的值,可得函數(shù)的最大值,再利用正弦函數(shù)的最值,求得$y=f(x+\frac{π}{6})$取得最小值時x的集合.

解答 解:根據(jù)函數(shù)$f(x)=cos(ωx+φ-\frac{π}{2})(ω>0\;,\;|φ|<\frac{π}{2})$=sin(ωx+φ) 的部分圖象,可得$\frac{1}{4}$•$\frac{2π}{ω}$=$\frac{π}{3}$-$\frac{π}{12}$,∴ω=2.
再根據(jù)五點法作圖可得2•$\frac{π}{12}$+φ=0,∴φ=-$\frac{π}{6}$,∴f(x)=sin(2x-$\frac{π}{6}$).
則$y=f(x+\frac{π}{6})$=sin(2x+$\frac{π}{6}$) 取得最小值時,應有2x+$\frac{π}{6}$=2kπ-$\frac{π}{2}$,即x=kπ-$\frac{π}{3}$,k∈Z,
故此時,x的集合為{x|x=kπ-$\frac{π}{3}$,k∈Z},
故選:C.

點評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由周期求出ω,由五點法作圖求出φ的值;還考查了正弦函數(shù)的最大值,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

7.已知圓C:x2+y2-6x-8y+21=0.
(1)若直線l1過定點A(1,1),且與圓C相切,求l1的方程;
(2)若圓D的半徑為3,圓心在直線l2:x-y+2=0上,且與圓C外切,求圓D的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知x與y之間的一組數(shù)據(jù):
X0134
Y1357
則y與x的線性回歸方程為y=bx+a必過點(2,4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若實數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ x+y≥0\\ x≤0\end{array}\right.$則2x+y的最小值為(  )
A.$-\frac{1}{2}$B.0C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.學校組織學生參加某項比賽,參賽選手必須有很好的語言表達能力和文字組織能力.學校對10位已入圍的學生進行語言表達能力和文字組織能力的測試,測試成績分為A,B,C三個等級,其統(tǒng)計結果如表:

語言表達能力
文字組織能力
ABC
A220
B1a1
C01b
由于部分數(shù)據(jù)丟失,只知道從這10位參加測試的學生中隨機抽取一位,抽到語言表達能力或文字組織能力為C的學生的概率為$\frac{3}{10}$.
( I)求a,b的值;
( II)從測試成績均為A或 B的學生中任意抽取2位,求其中至少有一位語言表達能力或文字組織能力為A的學生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.圓x2+y2-2mx-8y+13=0與直線x+y-1=0有公共點,則實數(shù)m的取值范圍是( 。
A.$[3-2{\sqrt{3}_{\;}}{,_{\;}}+∞)$B.[3,4]
C.$[-2{\sqrt{3}_{\;}}{,_{\;}}2\sqrt{3}]$D.$(-{∞_{\;}}{,_{\;}}3-2\sqrt{3}]∪[3+2{\sqrt{3}_{\;}}{,_{\;}}+∞)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.求曲線y=${∫}_{0}^{x}$$\sqrt{3-{t}^{2}}$dt從x=0至x=$\sqrt{3}$所對應的曲線的弧長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知直線l1:$\sqrt{3}$x+$\sqrt{10}$y-4=0為曲線C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一條切線,直線l2:x-2y-4=0為曲線C2:$\frac{{x}^{2}}{4{a}^{2}}$+$\frac{{y}^{2}}{2^{2}}$=1的一條切線.求曲線C1,C2的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若至少存在一個x,使得方程lnx-mx=x(x2-2ex)成立,則實數(shù)m的取值范圍為(-∞,$\frac{1}{e}+{e}^{2}$].

查看答案和解析>>

同步練習冊答案