【題目】某公司2016年前三個(gè)月的利潤(單位:百萬元)如下:
月份 |
|
|
|
利潤 |
|
|
|
(1)求利潤
關(guān)于月份
的線性回歸方程;
(2)試用(1)中求得的回歸方程預(yù)測
月和
月的利潤;
(3)試用(1)中求得的回歸方程預(yù)測該公司2016年從幾月份開始利潤超過
萬?
相關(guān)公式:
,
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率都為40%,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中;5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):
137 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為( )
A.0.40 B.0.30
C.0.35 D.0.25
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
:
的焦點(diǎn)為
,平行于
軸的兩條直線
,
分別交
于
,
兩點(diǎn),交
的準(zhǔn)線于
,
兩點(diǎn).
(1)若
在線段
上,
是
的中點(diǎn),證明:
;
(2)若△
的面積是△
的面積的兩倍,求
中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)已知函數(shù)
(
)的最小正周
期為
,
(Ⅰ)求
的值;
(Ⅱ)將函數(shù)
的圖像上各點(diǎn)的橫坐標(biāo)縮短到原來的
,縱坐標(biāo)不變,得到函數(shù)![]()
的圖像,求函數(shù)
在區(qū)間
上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
經(jīng)過點(diǎn)
,圓
的圓心在圓
的內(nèi)部,且直線
被圓
所截得的弦長為
.點(diǎn)
為圓
上異于
的任意一點(diǎn),直線
與
軸交于點(diǎn)
,直線
與
軸交于點(diǎn)
.
(1)求圓
的方程;
(2)求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國“一帶一路”戰(zhàn)略構(gòu)思提出后, 某科技企業(yè)為抓住“一帶一路”帶來的機(jī)遇, 決定開發(fā)生產(chǎn)一款大型電子設(shè)備, 生產(chǎn)這種設(shè)備的年固定成本為
萬元, 每生產(chǎn)
臺(tái),需另投入成本
(萬元), 當(dāng)年產(chǎn)量不足
臺(tái)時(shí),
(萬元); 當(dāng)年產(chǎn)量不小于
臺(tái)時(shí)
(萬元), 若每臺(tái)設(shè)備售價(jià)為
萬元, 通過市場分析,該企業(yè)生產(chǎn)的電子設(shè)備能全部售完.
(1)求年利潤
(萬元)關(guān)于年產(chǎn)量
(臺(tái))的函數(shù)關(guān)系式;
(2)年產(chǎn)量為多少臺(tái)時(shí) ,該企業(yè)在這一電子設(shè)備的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在
軸上,離心率
,且橢圓
經(jīng)過點(diǎn)
,過橢圓
的左焦點(diǎn)
且不與坐標(biāo)軸垂直的直線交橢圓
于
,
兩點(diǎn).
(1)求橢圓
的方程;
(2)設(shè)線段
的垂直平分線與
軸交于點(diǎn)
,求△
的面積
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題
:直線
與圓
有兩個(gè)交點(diǎn);命題:
.
(1)若
為真命題,求實(shí)數(shù)
的取值范圍;
(2)若
為真命題,
為假命題,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國男子籃球職業(yè)聯(lián)賽總決賽采用七場四勝制(即先勝四場者獲勝),進(jìn)入總決賽的甲乙兩隊(duì)中,若每一場比賽甲隊(duì)獲勝的概率為
,乙隊(duì)獲勝的概率為
,假設(shè)每場比賽的結(jié)果互相獨(dú)立,現(xiàn)已賽完兩場,乙隊(duì)以2:0暫時(shí)領(lǐng)先.
(1)求甲隊(duì)獲得這次比賽勝利的概率;
(2)設(shè)比賽結(jié)束時(shí)兩隊(duì)比賽的場數(shù)為隨機(jī)變量
,求隨機(jī)變量
的分布列和數(shù)學(xué)期望
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com