分析 (1)利用等差數(shù)列與等比數(shù)列的通項(xiàng)公式即可得出.
(2)利用對數(shù)的運(yùn)算性質(zhì)、“裂項(xiàng)求和”即可得出.
解答 解:(1)數(shù)列{an}滿足:an+1=2an,且a1,a2+1,a3成等差數(shù)列.
∴2(a2+1)=a1+a3,
∴2a2+2=$\frac{{a}_{2}}{2}$+2a2,
解得a2=4.
∴an=${a}_{2}•{2}^{n-2}$=4•2n-2=2n.
(2)bn=log2an=n,
$\frac{1}{_{n•_{n+1}}}$=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
∴數(shù)列{bn}前n項(xiàng)和Tn=$(1-\frac{1}{2})$+$(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$
=1-$\frac{1}{n+1}$
=$\frac{n}{n+1}$.
點(diǎn)評 本題考查了“裂項(xiàng)求和”、等差數(shù)列與等比數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
| 分組 | 頻數(shù) | 頻率 |
| [1,5) | 5 | 0.2 |
| [6,10) | 15 | m |
| [11,15) | n | P |
| [16,20) | 1 | 0.04 |
| 合計(jì) | a | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | [-11,-1] | B. | [-11,0] | C. | [-11,-6]∪(-6,-1] | D. | [-1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com