欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

設(shè)an=(2n+1)(3n+2),求它的前n項和Sn,并用數(shù)學(xué)歸納法證明結(jié)論.

解:S1=a1=15;?

S2=a1+a2=55;?

S3=a1+a2+a3=132.?

猜想Sn=(4n3+13n2+13n).?

證明:(1)n=1時顯然成立.?

(2)假設(shè)n=k時成立,即Sk=(4k3+13k2+13k),?

Sk+1=Sk+ak+1?

=(4k3+13k2+13k)+(2k+3)(3k+5)?

=(4k3+13k2+13k)+6k2+19k+15?

=(4k3+25k2+51k+30)?

=[4(k+1)3+13(k+1)2+13(k+1)].?

∴當(dāng)n=k+1時也成立.?

由(1)(2)知,Sn=(4n3+13n2+13n)對任意n∈N*成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浦東新區(qū)一模)定義數(shù)列{xn},如果存在常數(shù)p,使對任意正整數(shù)n,總有(xn+1-p)(xn-p)<0成立,那么我們稱數(shù)列{xn}為“p-擺動數(shù)列”.
(1)設(shè)an=2n-1,bn=(-
1
2
)n
,n∈N*,判斷{an}、{bn}是否為“p-擺動數(shù)列”,并說明理由;
(2)已知“p-擺動數(shù)列”{cn}滿足cn+1=
1
cn+1
,c1=1,求常數(shù)p的值;
(3)設(shè)dn=(-1)n•(2n-1),且數(shù)列{dn}的前n項和為Sn,求證:數(shù)列{Sn}是“p-擺動數(shù)列”,并求出常數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浦東新區(qū)一模)定義數(shù)列{xn},如果存在常數(shù)p,使對任意正整數(shù)n,總有(xn+1-p)(xn-p)<0成立,那么我們稱數(shù)列{xn}為“p-擺動數(shù)列”.
(1)設(shè)an=2n-1,bn=(-
12
)n
,n∈N*,判斷{an}、{bn}是否為“p-擺動數(shù)列”,并說明理由;
(2)設(shè)數(shù)列{cn}為“p-擺動數(shù)列”,c1>p,求證:對任意正整數(shù)m,n∈N*,總有c2n<c2m-1成立;
(3)設(shè)數(shù)列{dn}的前n項和為Sn,且Sn=(-1)n•n,試問:數(shù)列{dn}是否為“p-擺動數(shù)列”,若是,求出p的取值范圍;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)an=(2n+1)(3n+2),求它的前n項和Sn,并用數(shù)學(xué)歸納法證明結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年上海市浦東新區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

定義數(shù)列{xn},如果存在常數(shù)p,使對任意正整數(shù)n,總有(xn+1-p)(xn-p)<0成立,那么我們稱數(shù)列{xn}為“p-擺動數(shù)列”.
(1)設(shè)an=2n-1,,n∈N*,判斷{an}、{bn}是否為“p-擺動數(shù)列”,并說明理由;
(2)已知“p-擺動數(shù)列”{cn}滿足cn+1=,c1=1,求常數(shù)p的值;
(3)設(shè)dn=(-1)n•(2n-1),且數(shù)列{dn}的前n項和為Sn,求證:數(shù)列{Sn}是“p-擺動數(shù)列”,并求出常數(shù)p的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案