分析:(Ⅰ)把a(bǔ)=1代入函數(shù)解析式,求出f(1)的值,求出f′(1)的值,然后直接代入直線方程的點(diǎn)斜式得切線方程;
(Ⅱ)求出原函數(shù)的導(dǎo)函數(shù)
f′(x)=(x>0),當(dāng)a≥0時(shí),在定義域內(nèi)恒有f'(x)>0,∴f(x)的單調(diào)增區(qū)間是(0,+∞);當(dāng)a<0時(shí),由導(dǎo)函數(shù)的零點(diǎn)對(duì)定義域分段,判出在各區(qū)間段內(nèi)導(dǎo)函數(shù)的符號(hào),由導(dǎo)函數(shù)的符號(hào)判斷原函數(shù)的單調(diào)性;
(Ⅲ)利用(Ⅱ)求出的函數(shù)的單調(diào)區(qū)間,分a≥0和a<0討論,當(dāng)a<0時(shí)求出原函數(shù)的最小值,由最小值大于0求解實(shí)數(shù)a的取值范圍.
解答:解:(I)當(dāng)a=1時(shí),f(x)=x+lnx,
f′(x)=1+(x>0),
∴f(1)=1,f'(1)=2,
∴曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為2x-y-1=0;
(II)函數(shù)f(x)=x+alnx,
f′(x)=(x>0).
當(dāng)a≥0時(shí),在x∈(0,+∞)時(shí)f'(x)>0,∴f(x)的單調(diào)增區(qū)間是(0,+∞);
當(dāng)a<0時(shí),函數(shù)f(x)與f'(x)在定義域上的情況如下:

∴f(x)的單調(diào)減區(qū)間為(0,-a),單調(diào)增區(qū)間為(-a,+∞).
∴當(dāng)a≥0時(shí)f(x)的單調(diào)增區(qū)間是(0,+∞);
當(dāng)a<0時(shí),f(x)的單調(diào)減區(qū)間為(0,-a),單調(diào)增區(qū)間為(-a,+∞).
(III)由(II)可知,
①當(dāng)a>0時(shí),(0,+∞)是函數(shù)f(x)的單調(diào)增區(qū)間,
且有
f(e-)=e--1<1-1=0,f(1)=1>0,
此時(shí)函數(shù)有零點(diǎn),不符合題意;
②當(dāng)a=0時(shí),函數(shù)f(x)=x,在定義域(0,+∞)上沒零點(diǎn);
③當(dāng)a<0時(shí),f(-a)是函數(shù)f(x)的極小值,也是函數(shù)f(x)的最小值,
∴當(dāng)f(-a)=a(ln(-a)-1)>0,即a>-e時(shí),函數(shù)f(x)沒有零點(diǎn).
綜上所述,當(dāng)-e<a≤0時(shí),f(x)沒有零點(diǎn).