欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

12.在△ABC中,內(nèi)角A,B,C對應(yīng)的邊長分別為a,b,c,且滿足c(acosB-$\frac{1}{2}$b)=a2-b2
(Ⅰ)求角A;
(2)求sinB+sinC的最大值.

分析 (1)由余弦定理化簡已知可得a2=c2+b2-bc,根據(jù)余弦定理可求cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$,結(jié)合范圍A∈(0,π),即可解得A的值.
(2)利用三角函數(shù)恒等變換的應(yīng)用化簡可得sinB+sinC=$\sqrt{3}$sin(B+$\frac{π}{6}$),結(jié)合范圍B∈(0,$\frac{2π}{3}$),可求B+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{5π}{6}$),利用正弦函數(shù)的性質(zhì)即可解得sinB+sinC的最大值.

解答 (本題滿分為12分)
解:(1)∵c(acosB-$\frac{1}{2}$b)=a2-b2
∴由余弦定理可得:a2+c2-b2-bc=2a2-2b2.可得:a2=c2+b2-bc,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$,
∵A∈(0,π),
∴A=$\frac{π}{3}$…6分
(2)sinB+sinC=sinB+sin(A+B)=sinB+sinAcosB+cosAsinB
=$\frac{3}{2}$sinB+$\frac{\sqrt{3}}{2}$cosB=$\sqrt{3}$sin(B+$\frac{π}{6}$),
∵B∈(0,$\frac{2π}{3}$),
∴B+$\frac{π}{6}$∈($\frac{π}{6}$,$\frac{5π}{6}$),sin(B+$\frac{π}{6}$)∈($\frac{1}{2}$,1],
∴sinB+sinC的最大值為$\sqrt{3}$.…12分

點(diǎn)評 本題主要考查了余弦定理,三角函數(shù)恒等變換的應(yīng)用,正弦函數(shù)的圖象和性質(zhì)在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想的應(yīng)用,考查了計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.甲、乙兩人玩數(shù)字游戲,先由甲在一張卡片上任意寫出一個數(shù)字,記為a,再由乙猜甲剛才寫出的數(shù)字,把乙猜出的數(shù)字記為b,且a,b∈{1,2,3},若|a-b|≤1,則乙獲勝,現(xiàn)甲、乙兩人玩一次這個游戲,則乙獲勝的概率為( 。
A.$\frac{7}{9}$B.$\frac{2}{3}$C.$\frac{5}{9}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)經(jīng)過點(diǎn)$M(-\sqrt{2},\sqrt{3})$,且離心率等于$\frac{{\sqrt{2}}}{2}$.
(1)求橢圓的方程;
(2)若直線l:y=x+m與橢圓交于A,B兩點(diǎn),與圓x2+y2=2交于C,D兩點(diǎn).
①當(dāng)|CD|=2時,求直線l的方程;
②若λ=$\frac{|AB|}{|CD|}$,試求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.《九章算術(shù)》是我國古代的數(shù)學(xué)名著,書中有如下問題:“今有五人分五錢,令上二人所得與下三人等.問各得幾何.”其意思為“已知甲、乙、丙、丁、戊五人分5錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列.問五人各得多少錢?”(“錢”是古代的一種重量單位).這個問題中,甲所得為( 。
A.$\frac{5}{4}$錢B.$\frac{4}{3}$錢C.$\frac{3}{2}$錢D.$\frac{5}{3}$錢

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.將函數(shù)y=sin2x的圖象向左平移$\frac{π}{4}$個單位得到函數(shù)f(x)的圖象,則f(x)=( 。
A.cos2xB.sin(2x+$\frac{π}{4}$)C.-cos2xD.-sin2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C的焦點(diǎn)坐標(biāo)是F1(-1,0)、F2(1,0),過點(diǎn)F2垂直于長軸的直線l交橢圓C于B、D兩點(diǎn),且|BD|=3.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過定點(diǎn)P(0,2)且斜率為k的直線l與橢圓C相交于不同兩點(diǎn)M,N,試判斷:在x軸上是否存在點(diǎn)A(m,0),使得以AM,AN為鄰邊的平行四邊形為菱形?若存在,求出實數(shù)m的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知a,b∈R,則“a>0,b>0”是“a2+b2≥2ab”的( 。
A.既不充分也不要條件B.充分不必要條件
C.必要不充分條件D.充分必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)$f(x)=sin2x+\sqrt{3}cos2x$的最小正周期為(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.為了解我市高三學(xué)生參加體育活動的情況,市直屬某校高三學(xué)生500人參加“體育基本素質(zhì)技能”比賽活動,按某項比賽結(jié)果所在區(qū)間分組:第1組:[25,300,第2組:[30,35),第3組:[35,40),第4組:[40,45),第5組:[45,50],得到不完整的人數(shù)統(tǒng)計表如下:
年齡所在區(qū)間[25,30)[30,35)[35,40)[40,45)[45,50]
人數(shù)5050a150b
其頻率分布直方圖為:
(1)求人數(shù)統(tǒng)計表中的a和b的值;
(2)根據(jù)頻率分布直方圖,估計該項比賽結(jié)果的中位數(shù);
(3)用分層抽樣的方法從第1,2,3組中共抽取6人,再從這6人中隨機(jī)抽取2人參加上一級比賽活動,求參加上一級比賽活動中至少有1人的比賽結(jié)果在第3組的概率.

查看答案和解析>>

同步練習(xí)冊答案