分析 作出不等式組對應的平面區(qū)域,利用目標函數的幾何意義,求目標函數z=2x-y的最小值.
解答
解:由z=2x-y,得y=2x-z,作出不等式對應的可行域(陰影部分),
平移直線y=2x-z,由平移可知當直線y=2x-z,
經過點A時,直線y=2x-z的截距最大,此時z取得最小值,
由$\left\{\begin{array}{l}{x=1}\\{x+2y-4=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=\frac{3}{2}}\end{array}\right.$,
即A(1,$\frac{3}{2}$),代入z=2-$\frac{3}{2}$=$\frac{1}{2}$,
即目標函數z=2x-y的最小值為$\frac{1}{2}$,
故答案為:$\frac{1}{2}$.
點評 本題主要考查線性規(guī)劃的應用,利用目標函數的幾何意義,結合數形結合的數學思想是解決此類問題的基本方法.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | $\frac{5}{2}$,-$\frac{1}{2}$,-1 | B. | $\frac{5}{2}$,$\frac{1}{2}$,1 | C. | -$\frac{5}{2}$,$\frac{1}{2}$,1 | D. | $\frac{5}{2}$,-$\frac{1}{2}$,1 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com