分析 (1)由第5項,第6項與第7項的二項式系數(shù)成等差數(shù)列求得n的值,可得展開式中二項式系數(shù)最大的項.
(2)求得n=12,再利用二項展開式的通項公式,求得展開式中系數(shù)最大的項.
解答 解:(1)因為2${C}_{n}^{5}$=${C}_{n}^{4}$+${C}_{n}^{6}$,所以 n=7,或 n=14.
當n=7時,二項式系數(shù)最大的項為 T4=$\frac{35}{2}$x3,T5=70x4.
當n=14時,二項式系數(shù)最大的項為T8=${C}_{17}^{4}$•x7.
(2)因為2n=4096,所以n=12.
又因為 $\left\{\begin{array}{l}{{C}_{12}^{k}{•(\frac{1}{2})}^{12-k}{•2}^{k}{≥C}_{12}^{k-1}{•(\frac{1}{2})}^{13-k}{•2}^{k-1}}\\{{C}_{12}^{k}{•(\frac{1}{2})}^{12-k}{•2}^{k}{≥C}_{12}^{k+1}{•(\frac{1}{2})}^{11-k}{•2}^{k+1}}\end{array}\right.$,所以k=10,所以展開式中系數(shù)最大的項為T11=33•29•x10.
點評 本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數(shù)的性質(zhì),屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | x2+(y-2)2=10 | B. | x2+(y+2)2=10 | C. | (x-2)2+y2=10 | D. | (x+2)2+y2=10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{6}$ | D. | $\frac{π}{12}$ |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com