欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

4.已知函數(shù)f(x)=cosxsin(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$,x∈R
 (1)求f(x)的最小正周期及單調(diào)減區(qū)間;
(2)求f(x)在閉區(qū)間$[-\frac{π}{4}$,$\frac{π}{4}]$上的最大值和最小值.

分析 (1)利用三角恒等變換化簡函數(shù)f(x)的解析式,再利用正弦函數(shù)的周期性、單調(diào)性,求得f(x)的最小正周期及單調(diào)減區(qū)間.
(2)利用正弦函數(shù)的定義域和值域,求得f(x)在閉區(qū)間$[-\frac{π}{4}$,$\frac{π}{4}]$上的最大值和最小值.

解答 解:(1)函數(shù)f(x)=cosxsin(x+$\frac{π}{3}$)-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$=$\frac{1}{2}$sinxcosx+$\frac{\sqrt{3}}{2}$cos2x-$\sqrt{3}$cos2x+$\frac{\sqrt{3}}{4}$
=$\frac{1}{4}$sin2x-$\frac{\sqrt{3}}{4}$cos2x=$\frac{1}{2}$sin(2x-$\frac{π}{3}$),
∴f(x)的最小正周期T=$\frac{2π}{2}$=π; 
令2kπ+$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,求得kπ+$\frac{5π}{12}$≤x≤kπ+$\frac{11π}{12}$,可得f(x)的減區(qū)間為  $[{\frac{5}{12}π+kπ,\frac{11}{12}π+kπ}]$,$\begin{array}{l}k∈Z\end{array}$.
(2)在閉區(qū)間$[-\frac{π}{4}$,$\frac{π}{4}]$上,2x-$\frac{π}{3}$∈[-$\frac{5π}{6}$,$\frac{π}{6}$],故當(dāng)2x-$\frac{π}{3}$=$\frac{π}{6}$時,函數(shù)f(x)取得最大值為$\frac{1}{4}$,
當(dāng)2x-$\frac{π}{3}$=-$\frac{π}{2}$時,函數(shù)f(x)取得最小值為-$\frac{1}{2}$.

點(diǎn)評 本題主要考查三角恒等變換,正弦函數(shù)的周期性、單調(diào)性,定義域和值域,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$f(x)=cosx(sinx+cosx)-\frac{1}{2}$.
(1)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)求f(x)在區(qū)間$[{-\frac{π}{4},\frac{π}{2}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若實(shí)數(shù)x,y滿足不等式$\left\{\begin{array}{l}x+3y-3≥0\\ 2x-y-3≥0\\ x-my+1≥0\end{array}\right.$,且x+y的最大值為9,則實(shí)數(shù)m=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.橢圓$\frac{x^2}{4}+{y^2}=1$的兩個焦點(diǎn)為F1,F(xiàn)2,過F1作垂直于x軸的直線與橢圓相交,一個交點(diǎn)為P,則PF2=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若函數(shù)f(x)在區(qū)間A上,對?a,b,c∈A,f(a),f(b),f(c)為一個三角形的三邊長,則稱函數(shù)f(x)為“三角形函數(shù)”.已知函數(shù)f(x)=xlnx+m在區(qū)間$[{\frac{1}{e^2},e}]$上是“三角形函數(shù)”,則實(shí)數(shù)m的取值范圍為($\frac{{e}^{2}+2}{e}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知a,b,c為實(shí)數(shù),2a+4b=2c,4a+2b+1=4c,則c的最小值為$lo{g}_{2}\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)全集U=R,A={x|-2<x<1},B={x|2x>1},則A∩(∁UB)=( 。
A.(0,1)B.(-2,0)C.(-2,0]D.(-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=x+$\frac{a}{x}$(a>0),若對任意的m、n、$p∈[\frac{1}{3},1]$,長為f(m)、f(n)、f(p)的三條線段均可以構(gòu)成三角形,則正實(shí)數(shù)a的取值范圍是($\frac{1}{15}$,$\frac{1}{9}$)∪[1,$\frac{5}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖是兩個腰長均為10cm的等腰直角三角形拼成的一個四邊形ABCD,現(xiàn)將四邊形ABCD沿BD折成直二面角A-BD-C,則三棱錐A-BCD的外接球的體積為500$\sqrt{3}$cm3

查看答案和解析>>

同步練習(xí)冊答案