分析 利用$[\begin{array}{l}a,2\\ c,1\end{array}][\begin{array}{l}1\\ 1\end{array}]=3[\begin{array}{l}1\\ 1\end{array}]$,可得${M}=[\begin{array}{l}1,2\\ 2,1\end{array}]$.通過MM-1=$[\begin{array}{l}{1}&{0}\\{0}&{1}\end{array}]$,計算即可.
解答 解:由題意,得$[\begin{array}{l}a,2\\ c,1\end{array}][\begin{array}{l}1\\ 1\end{array}]=3[\begin{array}{l}1\\ 1\end{array}]$,
解得$\left\{\begin{array}{l}{a=1}\\{c=2}\end{array}\right.$,所以${M}=[\begin{array}{l}1,2\\ 2,1\end{array}]$.
設(shè)${{M}^{-1}}=[\begin{array}{l}x,y\\ z,w\end{array}]$,則${M}{{M}^{-1}}=[\begin{array}{l}1,2\\ 2,1\end{array}][\begin{array}{l}x,y\\ z,w\end{array}]=[\begin{array}{l}1,0\\ 0,1\end{array}]$,
解得$x=-\frac{1}{3},y=\frac{2}{3},z=\frac{2}{3},w=-\frac{1}{3}$,
∴${{M}^{-1}}=[\begin{array}{l}-\frac{1}{3},\frac{2}{3}\\ \frac{2}{3},-\frac{1}{3}\end{array}]$.
點(diǎn)評 本題考查求矩陣及其逆矩陣,考查計算能力,注意解題方法的積累,屬于中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 在定義域內(nèi),只有終邊相同的角的三角函數(shù)值才相等 | |
| B. | {α|α=k+$\frac{π}{6}$,k∈Z}≠{β|β=-k+$\frac{π}{6}$,k∈Z} | |
| C. | 若α是第二象限的角,則sin2α<0 | |
| D. | 第四象限的角可表示為{α|2k+$\frac{3}{2}$<α<2k,k∈Z} |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com