分析 由已知數(shù)列遞推式求出首項,得到當(dāng)n≥2時,Sn-1=$\frac{3}{2}$an-1-3,與原遞推式作差后可得數(shù)列{an}是以6為首項,以3為公比的等比數(shù)列.再由等比數(shù)列的通項公式得答案.
解答 解:由Sn=$\frac{3}{2}$an-3,得${a}_{1}=\frac{3}{2}{a}_{1}-3$,即a1=6.
當(dāng)n≥2時,Sn-1=$\frac{3}{2}$an-1-3,
兩式作差得an=$\frac{3}{2}$an-$\frac{3}{2}$an-1,即$\frac{1}{2}$an=$\frac{3}{2}$an-1.
∴an=3an-1(n≥2).
則數(shù)列{an}是以6為首項,以3為公比的等比數(shù)列.
∴an=6•3n-1=2•3n.
點評 本題考查數(shù)列遞推式,考查了等比關(guān)系的確定,考查了等比數(shù)列的通項公式,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 7 | B. | -7 | C. | 5 | D. | -5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | x0<-1或x0>1 | B. | -log23<x0<1 | C. | x0<-1 | D. | x0<-log23或x0>1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com