(本題滿分14分)
已知函數(shù)
,點
.
(Ⅰ)若
,函數(shù)
在
上既能取到極大值,又能取到極小值,求
的取值范圍;
(Ⅱ) 當
時,
對任意的
恒成立,求
的取值范圍;
(Ⅲ)若
,函數(shù)
在
和
處取得極值,且
,
是坐標原點,證明:直線
與直線
不可能垂直.
解:(Ⅰ)當
時,
,
令
得
,根據(jù)導數(shù)的符號可以得出函數(shù)
在
處取得極大值,
在
處取得極小值.函數(shù)
在
上既能取到極大值,又能取到極小值,
則只要
且
即可,即只要
即可.
所以
的取值范圍是
. ………… 4分
(Ⅱ)當
時,
對任意的
恒成立,
即
對任意的
恒成立,
也即
在對任意的
恒成立.
令
,則
. ………… 6分
記
,則
,
則這個函數(shù)在其定義域內(nèi)有唯一的極小值點
,
故也是最小值點,所以
,
從而
,所以函數(shù)
在
單調(diào)遞增.
函數(shù)
.故只要
即可.
所以
的取值范圍是
………… 9分
(Ⅲ)假設(shè)
,即
,
即
,
故
,
即
.
由于
是方程
的兩個根,
故
.代入上式得
. ………… 12分
,
即
,與
矛盾,
所以直線
與直線
不可能垂直. ………… 14分
科目:高中數(shù)學 來源: 題型:
| π |
| 3 |
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,
為
上的點,且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年江蘇省高三上學期期中考試數(shù)學 題型:解答題
(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若A
B=[0,3],求實數(shù)m的值
(Ⅱ)若A
CRB,求實數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年福建省高三上學期第三次月考理科數(shù)學卷 題型:解答題
(本題滿分14分)
已知點
是⊙
:
上的任意一點,過
作
垂直
軸于
,動點
滿足
。
(1)求動點
的軌跡方程;
(2)已知點
,在動點
的軌跡上是否存在兩個不重合的兩點
、
,使
(O是坐標原點),若存在,求出直線
的方程,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆江西省高一第二學期入學考試數(shù)學 題型:解答題
(本題滿分14分)已知函數(shù)
.
(1)求函數(shù)
的定義域;
(2)判斷
的奇偶性;
(3)方程
是否有根?如果有根
,請求出一個長度為
的區(qū)間
,使![]()
![]()
;如果沒有,請說明理由?(注:區(qū)間的長度為
).
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com