欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

16.某農(nóng)場(chǎng)所對(duì)冬季晝夜溫差大小與某反季大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了2017年2月1日至2月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如表:
日期2月1日2月2日2月3日2月4日2月5日
溫差x(°C)101113128
發(fā)芽數(shù)x(顆)2325302616
該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的兩組數(shù)據(jù)進(jìn)行檢驗(yàn).
(Ⅰ)求選取的2組數(shù)據(jù)恰好是不相鄰的2天數(shù)據(jù)的概率;
(Ⅱ)若選取的是2月1日與2月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)2月2日至2月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程
$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;可以預(yù)報(bào)當(dāng)溫差為20℃時(shí),種子發(fā)芽數(shù).
附:回歸直線方程:$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$;$\stackrel{∧}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

分析 (Ⅰ)根據(jù)題意列舉出從5組數(shù)據(jù)中選取2組數(shù)據(jù)共有10種情況,每種情況都是可能出現(xiàn)的,滿足條件的事件包括的基本事件有6種.根據(jù)等可能事件的概率做出結(jié)果.
(Ⅱ)根據(jù)所給的數(shù)據(jù),先做出x,y的平均數(shù),即做出本組數(shù)據(jù)的樣本中心點(diǎn),根據(jù)最小二乘法求出線性回歸方程的系數(shù),寫出線性回歸方程并進(jìn)行預(yù)報(bào).

解答 解:(Ⅰ)設(shè)抽到不相鄰的兩組數(shù)據(jù)為事件A,從5組數(shù)據(jù)中選取2組數(shù)
據(jù)共有10種情況:(1,2)(1,3)(1,4)(1,5)(2,3)
(2,4)(2,5)(3,4)(3,5)(4,5),…(3分)
其中數(shù)據(jù)為12月份的日期數(shù).每種情況都是可能出現(xiàn)的,
事件A包括的基本事件有6種.
∴P(A)=$\frac{3}{5}$,
∴選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率是$\frac{3}{5}$…(6分)
(Ⅱ)由數(shù)據(jù),求得$\overline{x}$=12,$\overline{y}$=27.…(8分)
由公式,求得$\stackrel{∧}$=2.5,$\stackrel{∧}{a}$=-3
∴y關(guān)于x的線性回歸方程為$\stackrel{∧}{y}$=2.5x-3.…(10分)
由此可以預(yù)報(bào)當(dāng)溫差為20℃的種子發(fā)芽數(shù)為47顆.…(12分)

點(diǎn)評(píng) 本題考查等可能事件的概率,考查線性回歸方程的求法,考查最小二乘法,考查回歸分析的初步應(yīng)用,是一個(gè)綜合題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)△ABC的三個(gè)內(nèi)角A、B、C的對(duì)邊分別為a、b、c,若向量$\overrightarrow{m}$=(cos$\frac{C}{2}$,sin$\frac{C}{2}$),$\overrightarrow{n}$=(cos$\frac{C}{2}$,cos$\frac{C}{2}$),且$\overrightarrow{m}$與$\overrightarrow{n}$的角為$\frac{π}{3}$.
(1)求角C的值;
(2)已知邊$c=\frac{7}{2}$,△ABC的面積$S=\frac{{3\sqrt{3}}}{2}$,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.霧霾天氣對(duì)人體健康有害,應(yīng)對(duì)霧霾污染、改善空氣質(zhì)量是當(dāng)前的首要任務(wù)是控制PM2.5,要從壓減燃煤、嚴(yán)格控產(chǎn)、調(diào)整產(chǎn)業(yè)、強(qiáng)化管理、聯(lián)防聯(lián)控、依法治理等方面采取重大舉措,聚焦重點(diǎn)領(lǐng)域,嚴(yán)格考核指標(biāo).某省環(huán)保部門為加強(qiáng)環(huán)境執(zhí)法監(jiān)管,派遣四個(gè)不同的專家組對(duì)A,B,C三個(gè)城市進(jìn)行霧霾落實(shí)情況抽查.
(1)若每個(gè)專家組隨機(jī)選取一個(gè)城市,四個(gè)專家組選取的城市可以相同,也可以不同,且每個(gè)城市都必須由專家組選取,求A城市恰有兩有專家組選取的概率;
(2)在檢查的過(guò)程中專家組從A城市的居民中隨機(jī)抽取出400人進(jìn)行是否戶外作業(yè)人員與是否患有呼吸道疾病進(jìn)行了統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如下:
 分類 患呼吸道疾病 未患呼吸道疾病 合計(jì)
 戶外作業(yè)人員 40 60 100
 
 非戶外作業(yè)人員
 60 240 300
 合計(jì) 100 300 400
根據(jù)上述的統(tǒng)計(jì)結(jié)果,我們是否有超過(guò)99%的把握認(rèn)為“戶外作業(yè)”與“患有呼吸道疾病”有關(guān)?
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥k) 0.50 0.400.25 0.15 0.10  0.05 0.025 0.010 0.005 0.001
 k 0.4550.708 1.323 0.072 2.706 3.8415.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知拋物線C:x2=4y,M為直線l:y=-1上任意一點(diǎn),過(guò)點(diǎn)M作拋物線C的兩條切線MA,MB,切點(diǎn)分別為A,B.
(1)當(dāng)M的坐標(biāo)為(0,-1)時(shí),求過(guò)M,A,B三點(diǎn)的圓的方程;
(2)若P(x0,y0)是C上的任意點(diǎn),求證:P點(diǎn)處的切線的斜率為$k=\frac{1}{2}{x_0}$;
(3)證明:以AB為直徑的圓恒過(guò)點(diǎn)M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.某校擬舉辦“成語(yǔ)大賽”,高一(1)班的甲、乙兩名同學(xué)在本班參加:“成語(yǔ)大賽”選拔測(cè)試,在相同的測(cè)試條件下,兩人5次測(cè)試的成績(jī)(單位:分)的莖葉圖如圖所示:
(1)你認(rèn)為選派誰(shuí)參加更好?并說(shuō)明理由;
(2)若從甲、乙兩人5次的成績(jī)中各隨機(jī)抽取1次進(jìn)行分析,設(shè)抽到的2次成績(jī)中,90分以上的次數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x)=$\left\{\begin{array}{l}{ln(-x),x<0}\\{\frac{x}{{e}^{x-1}}.x≥0}\end{array}\right.$,若方程[f(x)]2+mf(x)-m(m+1)=0有四個(gè)不等的實(shí)數(shù)根,則m的取值范圍是( 。
A.-1≤m<$\frac{4}{5}$B.m≤-1或m>1C.m=-1或m>1D.m=-1或0<m<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知拋物線${y^2}=\frac{2}{3}x$的焦點(diǎn)為F,過(guò)點(diǎn)F的直線交拋物線于A,B兩點(diǎn).
(1)若$\overrightarrow{AF}=3\overrightarrow{FB}$,求直線AB的斜率;
(2)設(shè)點(diǎn)M在線段AB上運(yùn)動(dòng),原點(diǎn)O關(guān)于點(diǎn)M的對(duì)稱點(diǎn)為C,求四邊形OACB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.記函數(shù)f(x)=-2m+2msin(x+$\frac{3π}{2}$)-2cos2(x-$\frac{π}{2}$)+1,x∈[-$\frac{π}{2}$,0]的最小值為h(m).
(1)求h(m);
(2)若h(m)=$\frac{1}{2}$,求m及此時(shí)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.用分析法證明:欲證①A>B,只需證②C<D,這里②是①的( 。
A.充分條件B.必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案