欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

設(shè)函數(shù)f(x)=(x+a)lnx﹣x+a.
(Ⅰ)設(shè)g(x)=f'(x),求g(x)函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,試研究函數(shù)f(x)=(x+a)lnx﹣x+a的零點(diǎn)個數(shù).

解:(Ⅰ)g(x)的定義域是(0,+∞)
∵g(x)=f'(x)=+lnx,
∴g'(x)=﹣
(1)當(dāng)a≤0時,g'(x)>0,
∵g(x)在(0,+∞)上單調(diào)遞增,故g(x)單調(diào)區(qū)間是(0,+∞)
(2)當(dāng)a>0時,g'(x)>0,
∵g(x)在(a,+∞)上單調(diào)遞增,再由g'(x)<0得g(x)在(0,a)上單調(diào)遞減.
g(x)的單調(diào)區(qū)間是(0,a)與(a,+∞)
(Ⅱ)由題(Ⅰ)知,g(x)在x=a時取到最小值,且為g(a)=+lna=1+lna.
∵a≥,
∴l(xiāng)na≥﹣1,
∴g(a)≥0。
∴f'(x)≥g(a)≥0.f(x)在(0,+∞)上單調(diào)遞增,
∵f(e)=(e+a)lne﹣e+a=2a>0,<0,∴內(nèi)有零點(diǎn).
故函數(shù)f(x)=(x+a)lnx﹣x+a的零點(diǎn)個數(shù)為1.

練習(xí)冊系列答案
  • 每日10分鐘口算心算速算天天練系列答案
  • 每時每刻快樂優(yōu)加系列答案
  • 孟建平培優(yōu)一號系列答案
  • 孟建平畢業(yè)總復(fù)習(xí)系列答案
  • 密解1對1系列答案
  • 名師導(dǎo)練系列答案
  • 名師講堂單元同步學(xué)練測系列答案
  • 名師面對面中考滿分特訓(xùn)方案系列答案
  • 名師名卷單元月考期中期末系列答案
  • 初中總復(fù)習(xí)教學(xué)指南系列答案
  • 年級 高中課程 年級 初中課程
    高一 高一免費(fèi)課程推薦! 初一 初一免費(fèi)課程推薦!
    高二 高二免費(fèi)課程推薦! 初二 初二免費(fèi)課程推薦!
    高三 高三免費(fèi)課程推薦! 初三 初三免費(fèi)課程推薦!
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
    (1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
    2
    ,求a的值;
    (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
    (3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
    2
    2
    ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
    f(-
    3
    4
    ) <f(
    15
    2
    )
    ;
    ②當(dāng)x∈[-1,0]時f(x)=x3+4x+3;
    ③f(x)(x≥0)的圖象與x軸的交點(diǎn)的橫坐標(biāo)由小到大構(gòu)成一個無窮等差數(shù)列;
    ④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
    其中真命題的個數(shù)為( 。

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

    設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
    (1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
    2
    ,求a的值;
    (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
    (3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
    2
    2
    ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:2011年江蘇省蘇、錫、常、鎮(zhèn)四市高三調(diào)研數(shù)學(xué)試卷(一)(解析版) 題型:解答題

    設(shè)函數(shù)f(x)=x(x-1)2,x>0.
    (1)求f(x)的極值;
    (2)設(shè)0<a≤1,記f(x)在(0,a]上的最大值為F(a),求函數(shù)的最小值;
    (3)設(shè)函數(shù)g(x)=lnx-2x2+4x+t(t為常數(shù)),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的實數(shù)m有且只有一個,求實數(shù)m和t的值.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:2011年江蘇省蘇州市高考數(shù)學(xué)一模試卷(解析版) 題型:解答題

    設(shè)函數(shù)f(x)=x(x-1)2,x>0.
    (1)求f(x)的極值;
    (2)設(shè)0<a≤1,記f(x)在(0,a]上的最大值為F(a),求函數(shù)的最小值;
    (3)設(shè)函數(shù)g(x)=lnx-2x2+4x+t(t為常數(shù)),若使g(x)≤x+m≤f(x)在(0,+∞)上恒成立的實數(shù)m有且只有一個,求實數(shù)m和t的值.

    查看答案和解析>>

    同步練習(xí)冊答案