| A. | $\frac{5\sqrt{3}}{6}$ | B. | $\frac{\sqrt{3}}{6}$ | C. | $\frac{\sqrt{33}}{6}$ | D. | $\sqrt{11}$ |
分析 取AC中點O,連結(jié)DO,EO,則EO∥AB,從而∠DEO是異面直線AB與DE所成角(或所成角的補角),由此利用余弦定理能求出異面直線AB與DE所成角的余弦值.
解答 解:
取AC中點O,連結(jié)DO,EO,
∵三棱錐A-BCD的各棱長都相等,E為BC中點,
∴EO∥AB,∴∠DEO是異面直線AB與DE所成角(或所成角的補角),
設(shè)三棱錐A-BCD的各棱長為2,
則DE=DO=$\sqrt{4-1}$=$\sqrt{3}$,OE=1,
∴cos∠DEO=$\frac{D{E}^{2}+O{E}^{2}-D{O}^{2}}{2×DE×OE}$=$\frac{3+1-3}{2×\sqrt{3}×1}$=$\frac{\sqrt{3}}{6}$.
∴異面直線AB與DE所成角的余弦值為$\frac{\sqrt{3}}{6}$.
故選:B.
點評 本題考查異面直線所成角的余弦值求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{43}{13}$ | B. | $\frac{42}{13}$ | C. | $\frac{12}{13}$ | D. | $\frac{6}{13}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 24 | B. | 48 | C. | 66 | D. | 132 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com