分析 設(shè)∠AOB=θ,AB=x,則由余弦定理求得 x2=5-4cosθ.再利用兩角和差的正弦公式化簡SOACB =S△AOB+S△ABC 的解析式,從而求得SOACB的面積取得最大值.
解答 解:設(shè)∠AOB=θ,則SOACB =S△AOB+S△ABC.
設(shè)AB=x,則x2=OB2+OA2-2OB•OAcosθ=12+22-2×1×2•cosθ=5-4cosθ.
故 SOACB=S△AOB+S△ABC=$\frac{1}{2}$×1×2•sinθ+$\frac{1}{2}•x•x•sin\frac{π}{3}$=sinθ+$\frac{\sqrt{3}}{4}$(5-4cosθ)=$\frac{5\sqrt{3}}{4}$+2sin(θ-$\frac{π}{3}$),
∴當2sin(θ-$\frac{π}{3}$)=1,即θ=$\frac{5π}{6}$時,四邊形OACB的面積取得最大值,并且最大值是$\frac{5\sqrt{3}}{4}+2$.
點評 本題主要余弦定理的應(yīng)用,兩角和差的正弦公式、正弦函數(shù)的最值,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 0 | B. | $\frac{1}{2}$ | C. | $\frac{3}{2}$ | D. | $\frac{\sqrt{3}}{2}+1$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{3}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com