分析 設P(cosθ,2sinθ),可得$tanα=\frac{2sinθ}{cosθ+1},tanβ=\frac{2sinθ}{cosθ-1}$,代入$\frac{{cos({α-β})}}{{cos({α+β})}}$,化簡整理即可得出.
解答 解:設P(cosθ,2sinθ),
∴$tanα=\frac{2sinθ}{cosθ+1},tanβ=\frac{2sinθ}{cosθ-1}$,$\frac{{cos({α-β})}}{{cos({α+β})}}=\frac{1+tanαtanβ}{1-tanαtanβ}=\frac{1-4}{1+4}=-\frac{3}{5}$.
故答案為:-$\frac{3}{5}$.
點評 本題考查了橢圓的參數(shù)方程、三角函數(shù)化簡求值,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{47}{6}$ | B. | $\frac{15}{2}$ | C. | $\frac{23}{3}$ | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\overrightarrow{{e}_{1}}$=(0,0),$\overrightarrow{{e}_{2}}$=(3,2) | B. | $\overrightarrow{{e}_{1}}$=(-1,2),$\overrightarrow{{e}_{2}}$=(3,-2) | ||
| C. | $\overrightarrow{{e}_{1}}$=(6,4),$\overrightarrow{{e}_{2}}$=(3,2) | D. | $\overrightarrow{{e}_{1}}$=(-2,5),$\overrightarrow{{e}_{2}}$=(2,-5) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $(1,-\frac{π}{4})$ | B. | $(1,\frac{3π}{4})$ | C. | $(\sqrt{2},-\frac{π}{4})$ | D. | $(\sqrt{2},\frac{3π}{4})$ |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com