欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

如圖,已知AB⊥平面ACD,DE⊥平面ACD,且AC=AD=DE=2AB=4,F(xiàn)為CD的中點,
(Ⅰ)求證:AF∥平面BCE;
(Ⅱ)若∠CAD=90°,求三棱錐F-BCE的體積。
(Ⅰ)證明:如圖,取DE的中點M,連接AM,F(xiàn)M,
∵AB⊥平面ACD,DE⊥平面ACD,
∴AB∥DE,
又∵AB=FM=,
∴四邊形ABEM是平行四邊形,
∴AM∥BE,
又∵AM平面BCE,BE平面BCE,
∴AM∥平面BCE,
∵CF=FD,DM=ME,
∴MF∥CE,
又∵MF平面BCE,CE平面BCE,
∴MF∥平面BCE,
又∵AM∩MF=M,
∴平面AHF∥平面BCE,
∵AF平面AMF,
∴AF∥平面BCE。
(Ⅱ)解:由(Ⅰ),知AF∥平面BCE,
∴VF-BCE=VA-BCE=VC-ABE,
∵AB⊥平面ACD,
∴平面ABED⊥平面ACD,
∵∠CAD=90°,即AC⊥AD,
∴AC⊥平面ABED,
所以,AC是三棱錐C-ABE的高,
∵AB=2,AD=4,
,
。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•惠州模擬)如圖,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中點.
(1)求證:AF∥平面BCE;
(2)求證:平面BCE⊥平面CDE;
(3)求平面BCE與平面ACD所成銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB,F(xiàn)為CD的中點
(Ⅰ) 求證:平面BCE⊥平面CDE;
(Ⅱ) 求二面角B-EF-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•棗莊一模)如圖,已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB,F(xiàn)為CD的中點.
(1)求證:AF∥平面BCE;
(2)求直線BF和平面BCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知AB⊥平面ACD,DE⊥平面ACD,三角形ACD為等邊三角形,AD=DE=2AB,F(xiàn)為CD的中點
(1)求證:AF∥平面BCE;
(2)求證:平面BCE⊥平面CDE;
(3)求二面角F-BE-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知AB⊥平面ACD,DE⊥平面ACD,且AC=AD=DE=2AB=4,F(xiàn)為CD的中點.
(Ⅰ)求證:AF∥平面BCE;
(Ⅱ) 若∠CAD=90°,求三棱錐F-BCE的體積.

查看答案和解析>>

同步練習冊答案