函數(shù)
的定義域?yàn)镽,數(shù)列
滿足
(
且
).
(Ⅰ)若數(shù)列
是等差數(shù)列,
,且
(k為非零常數(shù),
且
),求k的值;
(Ⅱ)若
,
,
,數(shù)列
的前n項(xiàng)和為
,對于給定的正整數(shù)
,如果
的值與n無關(guān),求k的值.
函數(shù)
的定義域?yàn)镽,數(shù)列
滿足
(
且
).
(Ⅰ)若數(shù)列
是等差數(shù)列,
,且
(k為非零常數(shù),
且
),求k的值;
(Ⅱ)若
,
,
,數(shù)列
的前n項(xiàng)和為
,對于給定的正整數(shù)
,如果
的值與n無關(guān),求k的值.
解:(Ⅰ)當(dāng)
時,
因?yàn)?
,
,
所以
.
因?yàn)閿?shù)列
是等差數(shù)列,所以
.
因?yàn)?
, 所以
. …6分
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012040912593604685490/SYS201204091300463437488133_DA.files/image008.gif">,
,且
,
所以
.
所以數(shù)列
是首項(xiàng)為2,公比為
的等比數(shù)列,
所以
.
所以
.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012040912593604685490/SYS201204091300463437488133_DA.files/image026.gif">,
所以
是首項(xiàng)為
,公差為
的等差數(shù)列.
所以 ![]()
.
因?yàn)?
,
又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012040912593604685490/SYS201204091300463437488133_DA.files/image014.gif">的值是一個與n無關(guān)的量,
所以
,
解得
. …13分
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
函數(shù)
的定義域?yàn)镽,且定義如下:
(其中M為非空數(shù)集且M R),在實(shí)數(shù)集R上有兩個非空真子集A、B滿足
,則函數(shù)
的值域?yàn)開__________.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
函數(shù)
的定義域?yàn)镽,且定義如下:
(其中M為非空數(shù)集且M R),在實(shí)數(shù)集R上有兩個非空真子集A、B滿足
,則函數(shù)
的值域?yàn)開__________.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
函數(shù)
的定義域?yàn)镽,且定義如下:
(其中M為非空數(shù)集且M R),在實(shí)數(shù)集R上有兩個非空真子集A、B滿足
,則函數(shù)
的值域?yàn)開__________.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省高三高考壓軸考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
函數(shù)
的定義域?yàn)镽,對任意實(shí)數(shù)x滿足
,且
.
當(dāng)l≤x≤2時,函數(shù)
的導(dǎo)數(shù)
,則
的單調(diào)遞減區(qū)間是
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:湖北省黃岡中學(xué)2010屆高三9月月考(理) 題型:填空題
函數(shù)
的定義域?yàn)镽,且定義如下:
(其中M為非空數(shù)集且M
R),在實(shí)數(shù)集R上有兩個非空真子集A、B滿足
,則函數(shù)
的值域?yàn)開__________.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com