分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),求得切線的斜率,可得a=-1,再由導(dǎo)數(shù)大于0,可得增區(qū)間;導(dǎo)數(shù)小于0,可得減區(qū)間;
(Ⅱ)由題意:ax+xlnx<x2,即a<x-lnx,由x>1,可得a<x-lnx恒成立.令g(x)=x-lnx,求出導(dǎo)數(shù),求得單調(diào)區(qū)間和極值、最值,即可得到a的范圍.
解答 解:(Ⅰ)f(x)的定義域?yàn)椋?,+∞),求導(dǎo)可得f′(x)=a+1+lnx,
由f′(1)=0得a+1=0,解得a=-1,
即f(x)=-x+xlnx,f′(x)=lnx,
令f′(x)>0得x>1;
令f′(x)<0得0<x<1,
所以f(x)的增區(qū)間為(1,+∞),減區(qū)間為(0,1).
(Ⅱ)由題意:ax+xlnx<x2,即a<x-lnx,
∵x>1,∴a<x-lnx恒成立.
令g(x)=x-lnx,則g′(x)=1-$\frac{1}{x}$=$\frac{x-1}{x}$,
∴g(x)在[1,+∞)上單調(diào)遞增,
又g(1)=1,∴當(dāng)x∈(1,+∞)時(shí),g(x)>1,
∴當(dāng)a≤1時(shí),a<g(x)恒成立,
∴a的取值范圍為(-∞,1].
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率和單調(diào)區(qū)間、極值和最值,考查不等式恒成立問(wèn)題的解法,注意運(yùn)用參數(shù)分離,考查運(yùn)算能力,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{\sqrt{2}}{2}$π | B. | $\frac{\sqrt{3}}{4}$π | C. | $\frac{\sqrt{3}}{2}$π | D. | $\sqrt{2}$π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | {x|x≥0} | B. | {x|x<1} | C. | {x|0<x≤1} | D. | {x|0≤x<1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com