分析 求得拋物線的焦點(diǎn)和準(zhǔn)線方程,運(yùn)用定義可得|PA|=|AF|,|QB|=|BF|,|PR|=$\frac{\sqrt{3}}{2}$|AF|,|QR|=$\frac{\sqrt{3}}{2}$|BF|,可得S△PAR:S△QBR=|AF|2:|BF|2.設(shè)出直線AB的參數(shù)方程,代入拋物線方程,求得t的值,即可得到所求比值.
解答 解:拋物線C:y2=2px(p>0)的焦點(diǎn)為($\frac{p}{2}$,0),準(zhǔn)線為x=-$\frac{p}{2}$,
由拋物線的定義可得|PA|=|AF|,|QB|=|BF|,
|PR|=|AF|sin60°=$\frac{\sqrt{3}}{2}$|AF|,|QR|═$\frac{\sqrt{3}}{2}$|BF|,
則S△PAR:S△QBR=$\frac{1}{2}$|PA|•|PR|:$\frac{1}{2}$|QB|•|QR|=|AF|2:|BF|2.
設(shè)過F的直線為$\left\{\begin{array}{l}{x=\frac{p}{2}-\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)),
代入拋物線方程,可得$\frac{3}{4}$t2+pt-p2=0,
解得t1=-2p,t2=$\frac{2}{3}$p.(p>0),
即有|AF|:|BF|=$\frac{2}{3}$p:2P=1:3,
則有S△PAR:S△QBR=1:9.
故答案為:$\frac{1}{9}$.
點(diǎn)評 本題考查拋物線的定義、方程和性質(zhì),主要考查定義法,以及面積公式,同時(shí)考查直線的參數(shù)方程的運(yùn)用,屬于中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{3}{10}$ | B. | $\frac{2}{5}$ | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{14}{3}$ | B. | -$\frac{2}{3}$ | C. | -$\frac{2}{3}$或$\frac{14}{3}$ | D. | -$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 120種 | B. | 72種 | C. | 56種 | D. | 24種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (0,4) | B. | (4,+∞) | C. | (0,4] | D. | [4,+∞) |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com