【題目】學(xué)校為測評班級學(xué)生對任課教師的滿意度,采用“100分制”打分的方式來計(jì)分,規(guī)定滿意度不低于98分,則評價(jià)該教師為“優(yōu)秀”,現(xiàn)從某班學(xué)生中隨機(jī)抽取10名,以下莖葉圖記錄了他們對某教師的滿意度分?jǐn)?shù)(以十位數(shù)字為莖,個(gè)位數(shù)字為葉);
![]()
(1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)求從這10人中隨機(jī)選取3人,至多有1人評價(jià)該教師是“優(yōu)秀”的概率;
(3)以這10人的樣本數(shù)據(jù)來估計(jì)整個(gè)班級的總體數(shù)據(jù),若從該班任選3人,記
表示抽到評價(jià)該教師為“優(yōu)秀”的人數(shù),求
的分布列及數(shù)學(xué)期望.
【答案】(1)眾數(shù)87;中位數(shù)88.5;(2)
;(3)分布列見解析,
.
【解析】
試題分析:(1)根據(jù)莖葉圖結(jié)合眾數(shù)與中位數(shù)的定義求解;(2)將所求事件分為所選3中無人獲得“優(yōu)秀”與有一個(gè)獲得“優(yōu)秀”兩種事件,從而利用互斥事件的概率公式求解;(3)首先求得
的所有可能取值,然后分別求出相應(yīng)概率,從而列出分布列,計(jì)算出數(shù)學(xué)期望.
試題解析:(1)由莖葉圖知眾數(shù)為87;中位數(shù)=
.
(2)設(shè)
表示所取3人中有
個(gè)人評價(jià)該教師為“優(yōu)秀”,至多有1人評價(jià)該教師為“優(yōu)秀”記為事件
,則
.
(3)
的可能取值為0,1,2,3,
;
;
;
;
分布列為
| 0 | 1 | 2 | 3 |
|
|
|
|
|
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于簡單隨機(jī)抽樣,下列說法正確的是( )
①它要求被抽取樣本的總體的個(gè)體數(shù)有限;
②它是從總體中逐個(gè)進(jìn)行抽取的,在實(shí)踐中操作起來也比較方便;
③它是一種不放回抽樣;
④它是一種等可能抽樣,在整個(gè)抽樣過程中,每個(gè)個(gè)體被抽到的機(jī)會(huì)相等,從而保證了這種抽樣方法的公平性.
A.①②③B.①②④C.①③④D.①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)高一女生共有450人,為了了解高一女生的身高情況,隨機(jī)抽取部分高一女生測量身高,所得數(shù)據(jù)整理后列出頻率分布表如下:
組別 | 頻數(shù) | 頻率 |
145.5~149.5 | 8 | 0.16 |
149.5~153.5 | 6 | 0.12 |
153.5~157.5 | 14 | 0.28 |
157.5~161.5 | 10 | 0.20 |
161.5~165.5 | 8 | 0.16 |
165.5~169.5 |
|
|
合計(jì) |
|
|
(1)求出表中字母
所對應(yīng)的數(shù)值;
(2)在給出的直角坐標(biāo)系中畫出頻率分布直方圖;
(3)估計(jì)該校高一女生身高在149.5~165.5
范圍內(nèi)有多少人?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某蛋糕店每天制作生日蛋糕若干個(gè),每個(gè)生日蛋糕的成本為50元,然后以每個(gè)100元的價(jià)格出售,如果當(dāng)天賣不完,剩下的蛋糕作垃圾處理.現(xiàn)需決策此蛋糕店每天應(yīng)該制作幾個(gè)生日蛋糕,為此搜集并整理了100天生日蛋糕的日需求量(單位:個(gè)),得到如圖所示的柱狀圖,以100天記錄的各需求量的頻率作為每天各需求量發(fā)生的概率.若蛋糕店一天制作17個(gè)生日蛋糕.
![]()
(1)求當(dāng)天的利潤
(單位:元)關(guān)于當(dāng)天需求量
(單位:個(gè),
)的函數(shù)解析式;
(2)求當(dāng)天的利潤不低于750元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線
上有一個(gè)動(dòng)點(diǎn)
,過點(diǎn)
作直線
垂直于
軸,動(dòng)點(diǎn)
在
上,且滿足
(
為坐標(biāo)原點(diǎn)),記點(diǎn)
的軌跡為
.
(I)求曲線
的方程;
(II)若直線
是曲線
的一條切線,當(dāng)點(diǎn)
到直線
的距離最短時(shí),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過點(diǎn)
的動(dòng)直線
與拋物線
相交于
、
兩點(diǎn).當(dāng)直線
的斜率是
時(shí),
.
(1)求拋物線
的方程;
(2)設(shè)線段
的中垂線在
軸上的截距為
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的是( )
A. 空間不同的三點(diǎn)確定一個(gè)平面
B. 空間兩兩相交的三條直線確定一個(gè)平面
C. 空間有三個(gè)角為直角的四邊形一定是平面圖形
D. 和同一條直線相交的三條平行直線一定在同一平面內(nèi)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
的前
項(xiàng)和為
,且
.
(1)若數(shù)列
是等比數(shù)列,求
的值;
(2)求數(shù)列
的通項(xiàng)公式;
(3)記
,求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小王于年初用50萬元購買一輛大貨車,第一年因繳納各種費(fèi)用需支出6萬元,從第二年起,每年都比上一年增加支出2萬元,假定該車每年的運(yùn)輸收入均為25萬元.小王在該車運(yùn)輸累計(jì)收入超過總支出后,考慮將大貨車作為二手車出售,若該車在第x年年底出售,其銷售價(jià)格為(25-x)萬元(國家規(guī)定大貨車的報(bào)廢年限為10年).
(1)大貨車運(yùn)輸?shù)降趲啄昴甑,該車運(yùn)輸累計(jì)收入超過總支出?
(2)在第幾年年底將大貨車出售,能使小王獲得的年平均利潤最大?(利潤=累計(jì)收入+銷售收入-總支出)
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com