欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

11.用數(shù)學歸納法證明等式1+2+3+…+(2n+1)=(n+1)(2n+1)時,當n=1時左邊表達式是,從k→k+1需要添的項是(2k+2)+(2k+3).

分析 由數(shù)學歸納法可知n=k時,左端為1+2+3+…+(2k+1),到n=k+1時,左端1+2+3+…+(2k+3),從而可得答案.

解答 解:∵用數(shù)學歸納法證明等式1+2+3+…+(2n+1)=(n+1)(2n+1)時,
當n=1左邊所得的項是1+2+3;
假設(shè)n=k時,命題成立,左端為1+2+3+…+(2k+1);
則當n=k+1時,左端為1+2+3+…+(2k+1)+(2k+2)+[2(k+1)+1],
∴從“k→k+1”需增添的項是(2k+2)+(2k+3).
故答案為:(2k+2)+(2k+3).

點評 本題考查數(shù)學歸納法,著重考查理解與觀察能力,考查推理證明的能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知圓C與y軸相切,圓心C在直線l1:x-3y=0上,且截直線l2:x-y=0的弦長為2$\sqrt{7}$,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若復數(shù)z滿足$\frac{\overline z}{1-i}={i^{2017}}$,其中i為虛數(shù)單位,則z=1-i.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知x1>0,x1≠1且xn+1=$\frac{{{x_n}(x_n^2+3)}}{3x_n^2+1}$(n=1,2,…).試證:“在數(shù)列{xn}中,對任意正整數(shù)n都滿足xn<xn+1”,當此題用反證法證明,否定結(jié)論時,應為( 。
A.對任意的正整數(shù)n,有xn=xn+1B.存在正整數(shù)n,使xn=xn+1
C.存在正整數(shù)n,使xn≥xn+1D.存在正整數(shù)n,使xn-xn-1≥0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,在各棱長為2的三棱柱ABC-A1B1C1中,側(cè)面A1ACC1⊥底面ABC,∠A1AC=60°.
(1)求三棱柱ABC-A1B1C1的體積;
(2)已知點D是平面ABC內(nèi)一點,且四邊形ABCD為平行四邊形,在直線AA1上是否存在點P,使DP∥平面AB1C?若存在,請確定點P的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若平面向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,則$\overrightarrow{a}$與$\overrightarrow{a}$+$\overrightarrow$的夾角為( 。
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.$\frac{cos(-585°)}{tan495°+sin(-690°)}$的值是$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=x2-ax(a≠0),g(x)=lnx,f(x)圖象與x軸交于點M(M異于原點),f(x)在M處的切線為l1,g(x-1)圖象與x軸交于點N且在該點處的切線為l2,并且l1與l2平行.
(Ⅰ)求f(2)的值;
(Ⅱ)已知實數(shù)t∈R,求函數(shù)y=f[xg(x)+t],x∈[1,e]的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知等差數(shù)列{an}的前n項和為Sn,首項為1的等比數(shù)列{bn}的公比為q,S2=a3=b3,且a1,a3,b4成等比數(shù)列.
(1)求{an}和{bn}的通項公式;
(2)設(shè)${c_n}=k+{a_n}+{log_3}{b_n}(k∈N_{\;}^+),若\frac{1}{c_1},\frac{1}{c_2},\frac{1}{c_t}$(t≥3)成等差數(shù)列,求k和t的值.

查看答案和解析>>

同步練習冊答案