【題目】設(shè)橢圓
的離心率是
,過點(diǎn)
的動(dòng)直線
于橢圓相交于
兩點(diǎn),當(dāng)直線
平行于
軸時(shí),直線
被橢圓
截得弦長(zhǎng)為
.
(Ⅰ)求
的方程;
(Ⅱ)在
上是否存在與點(diǎn)
不同的定點(diǎn)
,使得直線
和
的傾斜角互補(bǔ)?若存在,求
的坐標(biāo);若不存在,說明理由.
【答案】(Ⅰ)
;(Ⅱ)
.
【解析】
(Ⅰ)由橢圓的離心率公式和點(diǎn)滿足橢圓方程,結(jié)合
的關(guān)系,解方程可得
進(jìn)而得到橢圓方程;
(Ⅱ)假設(shè)存在定點(diǎn)
,使得直線
的傾斜角互補(bǔ),可設(shè)
點(diǎn)的坐標(biāo)為
,即有
,運(yùn)用直線的斜率公式,化簡(jiǎn)整理,結(jié)合恒成立問題解法,即可得到所求定點(diǎn).
(Ⅰ)由已知可得,橢圓經(jīng)過點(diǎn)
,
因此,
,解得
,
所以橢圓E方程為
;
(Ⅱ)設(shè)
點(diǎn)的坐標(biāo)為
,
當(dāng)直線
與x軸垂直時(shí),直線
與
的傾斜角均為
,滿足題意,
此時(shí)
,且
;
當(dāng)直線
的斜率存在時(shí),可設(shè)直線
的方程為
,
,
聯(lián)立
,得
,
其判別式
,
,
,
直線
的傾斜角互補(bǔ),
,
∴
,
即
,
整理得
,
把
,
代入得
,
所以
,即
,
綜上所述存在與點(diǎn)
不同的定點(diǎn)
滿足題意.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四邊形
中:
,
,
,
,
.點(diǎn)
為四邊形
的外接圓劣弧
(不含
)上一動(dòng)點(diǎn).
![]()
(1)證明:
;
(2)若
,設(shè)
,
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,
平面
,四邊形
為等腰梯形,
,
.
![]()
(1)求證:平面
平面
;
(2)已知
為
中點(diǎn),求
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(
,且
).
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)
在
上的最大值.
【答案】(Ⅰ)
的單調(diào)增區(qū)間為
,單調(diào)減區(qū)間為
.(Ⅱ)當(dāng)
時(shí),
;當(dāng)
時(shí),
.
【解析】【試題分析】(I)利用
的二階導(dǎo)數(shù)來研究求得函數(shù)
的單調(diào)區(qū)間.(II) 由(Ⅰ)得
在
上單調(diào)遞減,在
上單調(diào)遞增,由此可知
.利用導(dǎo)數(shù)和對(duì)
分類討論求得函數(shù)在
不同取值時(shí)的最大值.
【試題解析】
(Ⅰ)
,
設(shè)
,則
.
∵
,
,∴
在
上單調(diào)遞增,
從而得
在
上單調(diào)遞增,又∵
,
∴當(dāng)
時(shí),
,當(dāng)
時(shí),
,
因此,
的單調(diào)增區(qū)間為
,單調(diào)減區(qū)間為
.
(Ⅱ)由(Ⅰ)得
在
上單調(diào)遞減,在
上單調(diào)遞增,
由此可知
.
∵
,
,
∴
.
設(shè)
,
則
.
∵當(dāng)
時(shí),
,∴
在
上單調(diào)遞增.
又∵
,∴當(dāng)
時(shí),
;當(dāng)
時(shí),
.
①當(dāng)
時(shí),
,即
,這時(shí),
;
②當(dāng)
時(shí),
,即
,這時(shí),
.
綜上,
在
上的最大值為:當(dāng)
時(shí),
;
當(dāng)
時(shí),
.
[點(diǎn)睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)求最大值. 與函數(shù)零點(diǎn)有關(guān)的參數(shù)范圍問題,往往利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點(diǎn),并結(jié)合特殊點(diǎn),從而判斷函數(shù)的大致圖像,討論其圖象與
軸的位置關(guān)系,進(jìn)而確定參數(shù)的取值范圍;或通過對(duì)方程等價(jià)變形轉(zhuǎn)化為兩個(gè)函數(shù)圖象的交點(diǎn)問題.
【題型】解答題
【結(jié)束】
22
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系
中,圓
的普通方程為
. 在以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
.
(Ⅰ) 寫出圓
的參數(shù)方程和直線
的直角坐標(biāo)方程;
( Ⅱ ) 設(shè)直線
與
軸和
軸的交點(diǎn)分別為
,
為圓
上的任意一點(diǎn),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是某省從1月21日至2月24日的新冠肺炎每日新增確診病例變化曲線圖.
![]()
若該省從1月21日至2月24日的新冠肺炎每日新增確診人數(shù)按日期順序排列構(gòu)成數(shù)列
,
的前n項(xiàng)和為
,則下列說法中正確的是( )
A.數(shù)列
是遞增數(shù)列B.數(shù)列
是遞增數(shù)列
C.數(shù)列
的最大項(xiàng)是
D.數(shù)列
的最大項(xiàng)是![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的離心率為
,且過點(diǎn)
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)過橢圓
的左焦點(diǎn)的直線
與橢圓
交于
兩點(diǎn),直線
過坐標(biāo)原點(diǎn)且與直線
的斜率互為相反數(shù).若直線
與橢圓交于
兩點(diǎn)且均不與點(diǎn)
重合,設(shè)直線
與
軸所成的銳角為
,直線
與
軸所成的銳角為
,判斷
與
的大小關(guān)系并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是某省從1月21日至2月24日的新冠肺炎每日新增確診病例變化曲線圖.
![]()
若該省從1月21日至2月24日的新冠肺炎每日新增確診人數(shù)按日期順序排列構(gòu)成數(shù)列
,
的前n項(xiàng)和為
,則下列說法中正確的是( )
A.數(shù)列
是遞增數(shù)列B.數(shù)列
是遞增數(shù)列
C.數(shù)列
的最大項(xiàng)是
D.數(shù)列
的最大項(xiàng)是![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在以下命題中,不正確的個(gè)數(shù)為( )
①
是
,b共線的充要條件;②若
∥
,則存在唯一的實(shí)數(shù)λ,使
=λ
;③對(duì)空間任意一點(diǎn)O和不共線的三點(diǎn)A,B,C,若
=2
-2
-
,則P,A,B,C四點(diǎn)共面;④若{
,
,
}為空間的一個(gè)基底,則{
+
,
+
,
+
}構(gòu)成空間的另一個(gè)基底;⑤ |(
·
)·
|=|
|·|
|·|
|.
A. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的離心率為
,直線
交橢圓
于
、
兩點(diǎn),橢圓
的右頂點(diǎn)為
,且滿足
.
(1)求橢圓
的方程;
(2)若直線
與橢圓
交于不同兩點(diǎn)
、
,且定點(diǎn)
滿足
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com