(1)求{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}中b1=2,bn+1=
,n=1,2,3,….證明
<bn≤a4n-3,n=1,2,3,….
答案:(理)解:(1)由題設(shè):an+1=(
)(an+2)=(
)(an-
)+(
)(2+
)
=(
1)(an-
)+
,an+1-
=(
)(an-
).
所以數(shù)列{an-
}是首項(xiàng)為2-
,公比為
的等比數(shù)列,an-
=
(
)n,
即an的通項(xiàng)公式為an=2[(
)n+1],n=1,2,3,….
(2)用數(shù)學(xué)歸納法證明.
①當(dāng)n=1時(shí),因
<2,b1=a1=2,所以
<b1≤a1,結(jié)論成立.
②假設(shè)當(dāng)n=k時(shí),結(jié)論成立,即
<bk≤a4k-3,也即0<bk-
≤a4k-3-
.當(dāng)n=k+1時(shí),
bk+1-
=
=
>0,
又
,
所以bk+1
=
<(3
)2(bk
)≤(
-1)4(a4k-3
)
=a4k+12
,
也就是說(shuō),當(dāng)n=k+1時(shí),結(jié)論成立.根據(jù)①②,知
<bn≤a4n-3,n=1,2,3,….
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
A.nan<Sn<na1 B.Sn<nan<na1 C.nan>Sn>na1 D.Sn>na1>nan
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)判斷{
}是否為等差數(shù)列?并證明你的結(jié)論;
(2)求Sn和an;
(3)求證:S12+S22+…+Sn2≤![]()
.
(文)數(shù)列{an}的前n項(xiàng)和Sn(n∈N*),點(diǎn)(an,Sn)在直線y=2x-3n上.
(1)求證:數(shù)列{an+3}是等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)數(shù)列{an}中是否存在成等差數(shù)列的三項(xiàng)?若存在,求出一組適合條件的三項(xiàng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)若a1=0,求a2、a3的值;
(2)求證:a1=0是數(shù)列{an}為等差數(shù)列的充要條件.
(文)如圖,直線l:y=
(x-2)和雙曲線C:
=1(a>0,b>0)交于A、B兩點(diǎn),且|AB|=
,又l關(guān)于直線l1:y=
x對(duì)稱的直線l2與x軸平行.
![]()
(1)求雙曲線C的離心率;
(2)求雙曲線C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)求證:數(shù)列{an+1-an}(n∈N*)是等比數(shù)列;
(2)記bn=anln|an|(n∈N*),當(dāng)t=
時(shí),數(shù)列{bn}中是否存在最大項(xiàng).若存在,是第幾項(xiàng)?若不存在,請(qǐng)說(shuō)明理由.
(文)已知等比數(shù)列{xn}各項(xiàng)均為不等于1的正數(shù),數(shù)列{yn}滿足
=2(a>0且a≠1),設(shè)y3=18,y6=12.
(1)求證:數(shù)列{yn}是等差數(shù)列;
(2)若存在自然數(shù)M,使得n>M時(shí),xn>1恒成立,求M的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn,且bn=
,求證:對(duì)任意正整數(shù)n,總有Tn<2;
(3)在正數(shù)數(shù)列{cn}中,設(shè)(cn)n+1=
an+1(n∈N*),求數(shù)列{lncn}中的最大項(xiàng).
(文)已知數(shù)列{xn}滿足xn+1-xn=(
)n,n∈N*,且x1=1.設(shè)an=
xn
,且T2n=a1+2a2+3a3+…+ (2n-1)a2n-1+2na2n.
(1)求xn的表達(dá)式;
(2)求T2n;
(3)若Qn=1
(n∈N*),試比較9T2n與Qn的大小,并說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com