分析 原式可化為n(n2-1)(n2-4)=(n+2)(n+1)n(n-1)(n-2)=120•${C}_{n+2}^{5}$,命題得證.
解答 證明:∵n5-5n3+4n=n(n4-5n2+4)
=n(n2-1)(n2-4)
=n(n-1)(n+1)(n-2)(n+2)
=(n+2)(n+1)n(n-1)(n-2)
=${A}_{n+2}^{5}$
=${A}_{5}^{5}$•${C}_{n+2}^{5}$
=120•${C}_{n+2}^{5}$,
因為n>2且n∈Z,所以${C}_{n+2}^{5}$為整數(shù),
故n5-5n3+4n能被120整除.
點評 本題主要考查了運用排列數(shù)和組合公式證明整數(shù)問題,涉及多項式的因式分解和運用綜合法證明問題,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com