(Ⅰ)當a=2時,
f(x)=x2-2x+lnx∴
f′(x)=x-2+∴
f(1)=-2=-,f'(1)=0
切線方程為
y=-…(4分)
(Ⅱ)定義域(0,+∞)
f′(x)=x-a+==令f'(x)=0,解得x
1=1,x
2=a-1
①當a=2時,f'(x)≥0恒成立,則(0,+∞)是函數(shù)的單調(diào)遞增區(qū)間
②當a>2時,a-1>1,
在區(qū)間(0,1)和(a-1,+∞)上,f'(x)>0;在(1,a-1)區(qū)間上f'(x)<0,
故f(x)的單調(diào)遞增區(qū)間是(0,1)和(a-1,+∞),單調(diào)遞減區(qū)間是(1,a-1)
③當1<a<2時,在區(qū)間(0,a-1)和(1,+∞)上,f'(x)>0;在(a-1,1)區(qū)間上f'(x)<0,
故f(x)的單調(diào)遞增區(qū)間是(0,a-1)和(1,+∞),單調(diào)遞減區(qū)間是(a-1,1)
④當a≤1時,a-1≤0,在區(qū)間(0,1)上f'(x)<0,在區(qū)間(1,+∞)上,f'(x)>0,
故f(x)的單調(diào)遞增區(qū)間是(1,+∞),單調(diào)遞減區(qū)間是(0,1).
總之,當a=2時,(0,+∞)是函數(shù)的單調(diào)遞增區(qū)間
②當a>2時,f(x)的單調(diào)遞增區(qū)間是(0,1)和(a-1,+∞),單調(diào)遞減區(qū)間是(1,a-1)
③當1<a<2時,f(x)的單調(diào)遞增區(qū)間是(0,a-1)和(1,+∞),單調(diào)遞減區(qū)間是(a-1,1)
④當a≤1時,f(x)的單調(diào)遞增區(qū)間是(1,+∞),單調(diào)遞減區(qū)間是(0,1).…(13分)