【題目】某學(xué)校為了支持生物課程基地研究植物生長,計劃利用學(xué)?盏亟ㄔ煲婚g室內(nèi)面積為900m2的矩形溫室,在溫室內(nèi)劃出三塊全等的矩形區(qū)域,分別種植三種植物,相鄰矩形區(qū)域之間間隔1m,三塊矩形區(qū)域的前、后與內(nèi)墻各保留 1m 寬的通道,左、右兩塊矩形區(qū)域分別與相鄰的左右內(nèi)墻保留 3m 寬的通道,如圖.設(shè)矩形溫室的室內(nèi)長為x(m),三塊種植植物的矩形區(qū)域的總面積為S(m2). ![]()
(1)求S關(guān)于x的函數(shù)關(guān)系式;
(2)求S的最大值,及此時長X的值.
【答案】
(1)解:由題意:室內(nèi)面積為900m2的矩形,長為x(m),則寬為:
,
三塊種植植物的矩形長度為x﹣8,則寬為
,
植物的矩形區(qū)域的總面積為S=
,(450>x>8)
(2)解:由(1)可得S=
,(450>x>8)
化簡可得:S=916﹣(2x
),
∵2x
≥2
=240,(當(dāng)且僅當(dāng)x=60時取等號)
∴Smax=916﹣240=676(m2)
此時長為x=60.
故得S的最大值676平方米,長度為60米.
【解析】(1)根據(jù)題意,室內(nèi)面積為900m2的矩形,長為x(m),則寬為:
,三塊種植植物的矩形長度為x﹣8,則寬為
,植植物的矩形區(qū)域的總面積為S=長×寬,可得S關(guān)于x的函數(shù)關(guān)系式.(2)利用基本不等式的性質(zhì)求解S的最大值以及長度x的值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱(側(cè)棱與底面垂直的棱柱)ABC﹣A1B1C1中,點G是AC的中點.
![]()
(1)求證:B1C∥平面 A1BG;
(2)若AB=BC,
,求證:AC1⊥A1B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】超市某種綠色食品,過去20個月該食品的月市場需求量
(單位:
,
)即每月銷售的數(shù)據(jù)記錄如下:
137 108 114 121 115 135 122 140 128 139
125 140 130 125 105 115 133 124 149 115
對這20個數(shù)據(jù)按組距10進行分組,并統(tǒng)計整理,繪制了如下尚不完整的統(tǒng)計圖表:
![]()
(Ⅰ)寫出
,
的值.若視
分布在各區(qū)間內(nèi)的頻率為相應(yīng)的概率,試計算
;
(Ⅱ)記
組月市場需求量數(shù)據(jù)的平均數(shù)與方差分別為
,
,
組月市場需求量數(shù)據(jù)的平均數(shù)與方差分別為
,
,試分別比較
與
,
與
的大小;(只需寫出結(jié)論)
(Ⅲ)為保證該綠色產(chǎn)品的質(zhì)量,超市規(guī)定該產(chǎn)品僅在每月一日上架銷售,每月最后一日對所有未售出的產(chǎn)品進行下架處理.若超市每售出
該綠色食品可獲利潤5元,未售出的食品每
虧損3元,并且超市為下一個月采購了
該綠色食品,求超市下一個月銷售該綠色食品的利潤
的分布列及數(shù)學(xué)期望
.(以分組的區(qū)間中點值代表該組的各個值,并以月市場需求量落入該區(qū)間的頻率作為月市場需求量取該組區(qū)間中點值的概率)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列{an}滿足:a1=1,a2+a6=14;正項等比數(shù)列{bn}滿足:b1=2,b3=8.
(Ⅰ) 求數(shù)列{an},{bn}的通項公式an , bn;
(Ⅱ)求數(shù)列{anbn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐
的底面是正方形,
底面
,
,點
分別在棱
上,且
平面
.
![]()
(1)求證:
;
(2)求直線
與平面
所成角的正弦值.
(3)求二面角
的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系
中,曲線
的參數(shù)方程為
(
為參數(shù)).在以坐標原點為極點,
軸的非負半軸為極軸的極坐標系中,曲線
.
(1)寫出曲線
,
的普通方程;
(2)過曲線
的右焦點
作傾斜角為
的直線
,該直線與曲線
相交于不同的兩點
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐
中,
,
,
,平面
平面![]()
,
為等腰直角三角形, ![]()
(1)證明:
為直角三角形;
(2)若四棱錐
的體積為
,求
的面積.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,ABCD是正方形,PD⊥平面ABCD,PD=AB=2,E,F(xiàn),G分別是PC,PD,BC的中點. ![]()
(1)求證:平面PAB∥平面EFG;
(2)在線段PB上確定一點Q,使PC⊥平面ADQ,并給出證明;
(3)求出D到平面EFG的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有一個關(guān)于平面圖形的命題:如圖,同一個平面內(nèi)有兩個邊長都是a的正方形,其中一個的某頂點在另一個的中心,則這兩個正方形重疊部分的面積恒為
.類比到空間,有兩個棱長均為a的正方體,其中一個的某頂點在另一個的中心,則這兩個正方體重疊部分的體積恒為 . ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com