分析 (1)利用等差數(shù)列與等比數(shù)列的通項公式即可得出;
(2)利用等差數(shù)列與等比數(shù)列的前n項和公式即可得出.
解答 解:(1)由題意可得:$\left\{\begin{array}{l}{a_1}+{a_2}+{a_3}=7\\{a_1}+3+{a_3}+4=6{a_2}\end{array}\right.又q>1,得{a_1}=1,q=2$.
∴${a_n}={2^{n-1}}(n∈{N^*})$.
(2)${log_2}{a_n}={log_2}{2^{n-1}}=n-1$,
∴an+log2an=2n-1+(n-1).
∴Tn=$\frac{1-{2}^{n}}{1-2}$+$\frac{n(0+n-1)}{2}$=2n-1+$\frac{{n}^{2}-n}{2}$.
點(diǎn)評 本題考查了等差數(shù)列與等比數(shù)列的通項公式及其前n項和公式,考查了推理能力與計算能力,屬于中檔題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | {$\frac{{e}^{2}}{3}$} | B. | (0,$\frac{{e}^{2}}{3}$) | C. | ($\frac{{e}^{2}}{3}$,e) | D. | ($\frac{1}{e}$,1)∪{$\frac{{e}^{2}}{3}$} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| x | $\frac{π}{4}$ | π | $\frac{7π}{4}$ | $\frac{5π}{2}$ | $\frac{13π}{4}$ |
| Asin(ωx+φ) | 0 | 3 | 0 | -3 | 0 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com