【題目】已知直線l經(jīng)過點(diǎn)P(﹣2,5),且斜率為﹣ ![]()
(1)求直線l的方程;
(2)若直線m與l平行,且點(diǎn)P到直線m的距離為3,求直線m的方程.
【答案】
(1)解:由點(diǎn)斜式寫出直線l的方程為 y﹣5=﹣
(x+2),化簡(jiǎn)為 3x+4y﹣14=0.
(2)解:由直線m與直線l平行,可設(shè)直線m的方程為3x+4y+c=0,
由點(diǎn)到直線的距離公式,得
,即
,
解得c=1或c=﹣29,故所求直線方程 3x+4y+1=0,或 3x+4y﹣29=0.
【解析】(1)由點(diǎn)斜式寫出直線l的方程為 y﹣5=﹣
(x+2),化為一般式.(2)由直線m與直線l平行,可設(shè)直線m的方程為3x+4y+c=0,由點(diǎn)到直線的距離公式求得待定系數(shù)c 值,即得所求直線方程.
【考點(diǎn)精析】利用直線的斜率和一般式方程對(duì)題目進(jìn)行判斷即可得到答案,需要熟知一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是 k = tanα;直線的一般式方程:關(guān)于
的二元一次方程
(A,B不同時(shí)為0).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知
+
=1(a>>0)點(diǎn)A(1,
)是離心率為
的橢圓C:上的一點(diǎn),斜率為
的直線BD交橢圓C于B、D兩點(diǎn),且A、B、D三點(diǎn)不重合.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求△ABD面積的最大值;
(Ⅲ)設(shè)直線AB、AD的斜率分別為k1 , k2 , 試問:是否存在實(shí)數(shù)λ,使得k1+λk2=0成立?若存在,求出λ的值;否則說明理由.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知點(diǎn)
的極坐標(biāo)為
,曲線
的參數(shù)方程為
為參數(shù)).
(1)直線
過
且與曲線
相切,求直線
的極坐標(biāo)方程;
(2)點(diǎn)
與點(diǎn)
關(guān)于
軸對(duì)稱,求曲線
上的點(diǎn)到點(diǎn)
的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(2x+φ)(0<φ<2π)的圖象過點(diǎn)(
,-2).
(1)求φ的值;
(2)若f(
)=
,-
<α<0,求sin(2α-
)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , a1=10,an+1=9Sn+10.
(1)求證:{lgan}是等差數(shù)列;
(2)設(shè)Tn是數(shù)列{
}的前n項(xiàng)和,求Tn;
(3)求使Tn>
(m2﹣5m)對(duì)所有的n∈N*恒成立的整數(shù)m的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分別是AP、AD的中點(diǎn),求證: ![]()
(1)直線EF∥平面PCD;
(2)平面BEF⊥平面PAD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了準(zhǔn)確地把握市場(chǎng),做好產(chǎn)品生產(chǎn)計(jì)劃,對(duì)過去四年的數(shù)據(jù)進(jìn)行整理得到了第
年與年銷量
(單位:萬件)之間的關(guān)系如表:
![]()
![]()
(Ⅰ)在圖中畫出表中數(shù)據(jù)的散點(diǎn)圖;
(Ⅱ)根據(jù)(Ⅰ)中的散點(diǎn)圖擬合
與
的回歸模型,并用相關(guān)系數(shù)甲乙說明;
(Ⅲ)建立
關(guān)于
的回歸方程,預(yù)測(cè)第5年的銷售量約為多少?.
附注:參考數(shù)據(jù):
,
,
.
參考公式:相關(guān)系數(shù)
,
回歸方程
中斜率和截距的最小二乘法估計(jì)公式分別為:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】研究人員隨機(jī)調(diào)查統(tǒng)計(jì)了某地1000名“上班族”每天在工作之余使用手機(jī)上網(wǎng)的時(shí)間,并將其繪制為如圖所示的頻率分布直方圖.若同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表,則可估計(jì)該地“上班族”每天在工作之余使用手機(jī)上網(wǎng)的平均時(shí)間是( ) ![]()
A.1.78小時(shí)
B.2.24小時(shí)
C.3.56小時(shí)
D.4.32小時(shí)
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com