欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

9.f(x)=x2-(a+1)x+a,g(x)=-(a+4)x-4+a,(a∈R).
(1)比較f(x)與g(x)的大。
(2)解關于x的不等式:f(x)>0.

分析 (1)2個函數(shù)作差可得:f(x)-g(x)=(x+$\frac{3}{2}$)2+$\frac{7}{4}$>0,即可得解f(x)>g(x).
(2)由f(x)>0得(x-a)(x-1)>0,利用一元二次不等式的解法分類討論即可得解.

解答 解:(1)∵$f(x)-g(x)={x^2}-(a+1)x+a+(a+4)x+4+a={x^2}+3x+4={(x+\frac{3}{2})^2}+\frac{7}{4}>0$,
∴f(x)>g(x).
(2)由f(x)>0得(x-a)(x-1)>0,
①當a<1時,解集為{x|x<a或x>1},
②當a=1時,解集為{x|x≠1},
③當a>1時,解集為{x|x<1或x>a}.

點評 一元二次不等式的核心還是求一元二次方程的根,然后在結合圖象判定其區(qū)間.要求能熟練掌握,爭取基礎分不要丟,本題屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.已知$\overrightarrow{a}$,$\overrightarrow$不共線,且$\overrightarrow{c}$=λ1$\overrightarrow{a}$+λ2$\overrightarrow$(λ1,λ2∈R),若$\overrightarrow{c}$∥$\overrightarrow$,則λ1=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知圓C:(x-1)2+(y-2)2=25及直線l:(2m+1)x+(m+1)y=7m+4(m∈R)
(1)試判斷直線l是否過定點,若過定點,則求出定點,不過,則說明理由;
(2)證明:不論m取什么實數(shù),直線l與圓C恒相交;
(3)求圓C截直線l所得的弦長的最小值及此時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.在△ABC中,AD⊥BC,垂足為D,AD在△ABC的內(nèi)部,且BD:DC:AD=2:3:6,則∠BAC的大小為(  )
A.$\frac{3π}{4}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{3π}{4}$或$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.雙曲線4x2-y2=16的焦點坐標是(±2$\sqrt{5}$,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.點A(2,3,5)關于坐標平面xOy的對稱點B的坐標是( 。
A.(2,3,-5)B.(2,-3,5)C.(-2,3,5)D.(-2,-3,5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.如圖,在大小為45°的二面角A-EF-D中,四邊形ABFE與CDEF都是邊長為1的正方形,則B與C兩點間的距離是(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.1D.$\sqrt{3-\sqrt{2}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.定義在R上的函數(shù)f(x)滿足:f(-x)=f(x),且f(x+2)=f(x),當x∈[-1,0]時,f(x)=($\frac{1}{2}$)x-1,若在區(qū)間[-1,5]內(nèi)函數(shù)F(x)=f(x)-logax有三個零點,則實數(shù)a的取值范圍為(  )
A.($\frac{1}{2}$,2)B.(1,5)C.(2,3)D.(3,5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=ln($\sqrt{{x}^{2}+1}+x$)
(1)證明:函數(shù)f(x)=ln($\sqrt{{x}^{2}+1}+x$)在定義域R上為增函數(shù);
(2)若函數(shù)g(x)=f(x)+2x-2-x滿足g(3a-1)+g(a-3)>0,求a的取值范圍.

查看答案和解析>>

同步練習冊答案