| A. | $y={(\sqrt{x})^2}$ | B. | $y=\sqrt{x^2}$ | C. | $y=\left\{\begin{array}{l}x,(x>0)\\-x,(x<0)\end{array}\right.$ | D. | $y=\frac{x^2}{x}$ |
分析 根據(jù)兩個函數(shù)的定義域相同,對應(yīng)關(guān)系也相同,即可判斷它們的同一函數(shù).
解答 解:對于A,函數(shù)y=${(\sqrt{x})}^{2}$=x(x≥0),與y=|x|(x∈R)的定義域不同,對應(yīng)關(guān)系也不同,所以不是同一函數(shù);
對于B,函數(shù)y=$\sqrt{{x}^{2}}$=|x|(x∈R),與y=|x|(x∈R)的定義域相同,對應(yīng)關(guān)系也相同,所以是同一函數(shù);
對于C,函數(shù)y=$\left\{\begin{array}{l}{x,x>0}\\{-x,x<0}\end{array}\right.$=|x|(x≠0),與y=|x|(x∈R)的定義域不同,所以不是同一函數(shù);
對于D,函數(shù)y=$\frac{{x}^{2}}{x}$=x(x≠0),與y=|x|(x∈R)的定義域不同,對應(yīng)關(guān)系也不同,所以不是同一函數(shù).
故選:B.
點評 本題考查了判斷兩個函數(shù)是否為同一函數(shù)的應(yīng)用問題,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $(\frac{1}{2},\frac{2}{3})$ | B. | $(-∞,\frac{1}{2})$ | C. | $(\frac{1}{2},+∞)$ | D. | $(\frac{2}{3},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com