已知數(shù)列{an}滿足an=an-1-an-2(n≥3,n∈N*),它的前n項(xiàng)和為Sn.若S9=6,S10=5,則a1的值為 .
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省南通市高三第二次調(diào)研測(cè)試數(shù)學(xué)試卷(解析版) 題型:填空題
設(shè)l,m表示直線,
表示平面,m是
內(nèi)任意一條直線.則“
”是“
”成立的 條件.(在“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”中選填一個(gè))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省南通市高三年級(jí)第三次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
設(shè)數(shù)列{an}為等差數(shù)列,數(shù)列{bn}為等比數(shù)列.若
,
,且
,則
數(shù)列{bn}的公比為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省南京市高三年級(jí)第三次模擬考試數(shù)學(xué)試卷(解析版) 題型:解答題
已知矩陣A=
(k≠0)的一個(gè)特征向量為α=
,A的逆矩陣A-1對(duì)應(yīng)的變換將點(diǎn)(3,1)變?yōu)辄c(diǎn)(1,1).求實(shí)數(shù)a,k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省南京市高三年級(jí)第三次模擬考試數(shù)學(xué)試卷(解析版) 題型:解答題
在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且
+1=
.
(1)求B;
(2)若cos(C+
)=
,求sinA的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇省南京市高三年級(jí)第三次模擬考試數(shù)學(xué)試卷(解析版) 題型:填空題
執(zhí)行右邊的偽代碼,輸出的結(jié)果是 .
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年廣東省韶關(guān)市高三4月高考模擬(二模)理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知點(diǎn)
,
的坐標(biāo)分別為
,
.直線
,
相交于點(diǎn)
,且它們的斜率之積是
,記動(dòng)點(diǎn)
的軌跡為曲線
.
(1)求曲線
的方程;
(2)設(shè)
是曲線
上的動(dòng)點(diǎn),直線
,
分別交直線
于點(diǎn)
,線段
的中點(diǎn)為
,求直線
與直線
的斜率之積的取值范圍;
(3)在(2)的條件下,記直線
與
的交點(diǎn)為
,試探究點(diǎn)
與曲線
的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年廣東省韶關(guān)市高三4月高考模擬(二模)理科數(shù)學(xué)試卷(解析版) 題型:選擇題
函數(shù)
的零點(diǎn)所在區(qū)間是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年廣東省肇慶市高三3月第一次模擬理科數(shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)
是虛數(shù)單位,
,
為復(fù)數(shù)
的共軛復(fù)數(shù),則
( )
A.
B.
C.
D.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com