【題目】已知函數(shù)
在
處的切線方程為
.
(1)求函數(shù)
的解析式;
(2)若關(guān)于
的方程
恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)
的值;
(3)數(shù)列
滿足
.
證明:①
;
②
.
【答案】(1)
;(2)
或
;(3)證明見解析.
【解析】
(1)把x=3代入切線方程,求出切點(diǎn),把切點(diǎn)坐標(biāo)代入二次函數(shù)得關(guān)于a,b方程,再由
得另一方程,聯(lián)立求解a,b的值,則函數(shù)解析式可求;
(2)把(1)中求出函數(shù)f(x)的解析式代入方程f(x)=k ex,然后轉(zhuǎn)化為k=e﹣x(x2﹣x+1),然后利用導(dǎo)數(shù)求函數(shù)
的極值,根據(jù)函數(shù)
的極值情況,通過畫簡(jiǎn)圖得到使方程k=e﹣x(x2﹣x+1),即方程f(x)=k ex恰有兩個(gè)不同的實(shí)根時(shí)的實(shí)數(shù)k的值;
(3)①利用作差法證明即可;(2)由
得到
,分別取n=1,2,…,代入
后化簡(jiǎn),則
的整數(shù)部分可求.
(1)
,依題設(shè),有
即
,
解得
,
∴
.
(2)方程
,即
,得
,
記
,
則
.
令
,得
.
∴當(dāng)
時(shí),
取極小值
;當(dāng)
時(shí),
取極大值
.
作出直線
和函數(shù)
的大致圖象,可知當(dāng)
或
時(shí),
它們有兩個(gè)不同的交點(diǎn),因此方程
恰有兩個(gè)不同的實(shí)根.
(3)①證明
,得
,又
.
∴
,
∴
.
②由
,得
,
,
即:
,![]()
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)
在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
| 0 |
| π |
| 2π |
x |
|
| |||
| 0 | 4 | -4 | 0 |
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整,填寫在答題卡上相應(yīng)位置,并直接寫出函數(shù)f(x)的解析式;
(2)將
圖象上所有點(diǎn)向左平行移動(dòng)θ(
)個(gè)單位長(zhǎng)度,得到
的圖象.若
圖象的一個(gè)對(duì)稱中心為
,求θ的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
(t是參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為
.
(Ⅰ)寫出直線l的普通方程、曲線C的參數(shù)方程;
(Ⅱ)過曲線C上任意一點(diǎn)A作與直線l的夾角為45°的直線,設(shè)該直線與直線l交于點(diǎn)B,求
的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解人們對(duì)“延遲退休年齡政策”的態(tài)度,某部門從網(wǎng)年齡在15~65歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:
![]()
(I)由頻率分布直方圖估計(jì)年齡的眾數(shù)和平均數(shù);
![]()
(II)由以上統(tǒng)計(jì)數(shù)據(jù)填2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)“延遲退休年齡政策”的支持度有差異;
![]()
參考數(shù)據(jù):
![]()
![]()
(III)若以45歲為分界點(diǎn),從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項(xiàng)活動(dòng).現(xiàn)從這8人中隨機(jī)抽2人.求抽到的2人中1人是45歲以下,另一人是45歲以上的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線
的左、右焦點(diǎn)為
,
,
為
右支上的動(dòng)點(diǎn)(非頂點(diǎn)),
為
的內(nèi)心.當(dāng)
變化時(shí),
的軌跡為( )
A.直線的一部分B.橢圓的一部分
C.雙曲線的一部分D.無法確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)復(fù)數(shù)
與復(fù)平面上點(diǎn)
對(duì)應(yīng).
(1)若
是關(guān)于
的一元二次方程
的一個(gè)虛根,且
,求實(shí)數(shù)
的值;
(2)設(shè)復(fù)數(shù)
滿足條件
(其中
、常數(shù)
),當(dāng)
為奇數(shù)時(shí),動(dòng)點(diǎn)
的軌跡為
,當(dāng)
為偶數(shù)時(shí),動(dòng)點(diǎn)
的軌跡為
,且兩條曲線都經(jīng)過點(diǎn)
,求軌跡
與
的方程;
(3)在(2)的條件下,軌跡
上存在點(diǎn)
,使點(diǎn)
與點(diǎn)
的最小距離不小于
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】市政府招商引資,為吸引外商,決定第一個(gè)月產(chǎn)品免稅,某外資廠該第一個(gè)月A型產(chǎn)品出廠價(jià)為每件10元,月銷售量為6萬(wàn)件;第二個(gè)月,當(dāng)?shù)卣_始對(duì)該商品征收稅率為
,即銷售1元要征收
元)的稅收,于是該產(chǎn)品的出廠價(jià)就上升到每件
元,預(yù)計(jì)月銷售量將減少p萬(wàn)件.
(1)將第二個(gè)月政府對(duì)該商品征收的稅收y(萬(wàn)元)表示成p的函數(shù),并指出這個(gè)函數(shù)的定義域;
(2)要使第二個(gè)月該廠的稅收不少于1萬(wàn)元,則p的范圍是多少?
(3)在第(2)問的前提下,要讓廠家本月獲得最大銷售金額,則p應(yīng)為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)
,其中x>0,k為常數(shù),e為自然對(duì)數(shù)的底數(shù).
(1)當(dāng)k≤0時(shí),求
的單調(diào)區(qū)間;
(2)若函數(shù)
在區(qū)間(1,3)上存在兩個(gè)極值點(diǎn),求實(shí)數(shù)k的取值范圍;
(3)證明:對(duì)任意給定的實(shí)數(shù)k,存在
(
),使得
在區(qū)間(
,
)上單調(diào)遞增.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在實(shí)數(shù)集R上的函數(shù),且y=f(x+1)是偶函數(shù),當(dāng)x≥1時(shí),f(x)=2x﹣1,則f(
),f(
),f(
)的大小關(guān)系是( 。
A. f(
)<f(
)<f(
) B. f(
)<f(
)<f(
)
C. f(
)<f(
)<f(
) D. f(
)<f(
)<f(
)
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com