已知拋物線
的焦點為
,點
是拋物線上的一點,且其縱坐標(biāo)為4,
.
(1)求拋物線的方程;
(2)設(shè)點
是拋物線上的兩點,
的角平分線與
軸垂直,求直線AB的斜率;
(3)在(2)的條件下,若直線
過點
,求弦
的長.
(1)
(2)-1(3)![]()
【解析】
試題分析:解:(1)設(shè)
,因為
,由拋物線的定義得
,又
,所以
,因此
,解得
,從而拋物線的方程為
.
(2)由(1)知點
的坐標(biāo)為
,因為
的角平分線與
軸垂直,所以可知
的傾斜角互補,即
的斜率互為相反數(shù)
設(shè)直線
的斜率為
,則
,由題意
,
把
代入拋物線方程得
,該方程的解為4、
,
由韋達定理得
,即
,同理
,
所以
,
(3)設(shè)
,代入拋物線方程得
,
,
考點:拋物線的方程
點評:關(guān)于曲線的大題,第一問一般是求出曲線的方程,第二問常與直線結(jié)合起來,當(dāng)涉及到交點時,常用到根與系數(shù)的關(guān)系式:
(
)。
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年浙江省高三上學(xué)期第三次統(tǒng)練理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知拋物線
的焦點為
,準(zhǔn)線為
,點
為拋物線C上的一點,且
的外接圓圓心到準(zhǔn)線的距離為
.
![]()
(I)求拋物線C的方程;
(II)若圓F的方程為
,過點P作圓F的2條切線分別交
軸于點
,求
面積的最小值時
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆海南省高二上期末考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知拋物線
的焦點為
,點
,
在拋物線上,且
, 則有 ( )
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省臺州市高三調(diào)研考試?yán)頂?shù) 題型:選擇題
已知拋物線
的焦點為
,
關(guān)于原點的對稱點為
過
作
軸的垂線交拋物線于
兩點.有下列四個命題:①
必為直角三角形;②
不一定為直角三角形;③直線
必與拋物線相切;④直線
不一定與拋物線相切.其中正確的命題是
(A)①③ (B)①④ (C)②③ (D)②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年黑龍江省高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:選擇題
已知拋物線
的焦點為F,準(zhǔn)線為
,經(jīng)過F且斜率為
的直線與拋物線在
軸上方的部分相交于點A,且AK![]()
,垂足為K,則
的面積是( )
A 4 B
C
D 8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012屆海南省高二年級第一學(xué)期期末考試?yán)砜茢?shù)學(xué)卷 題型:選擇題
已知拋物線
的焦點為
,點
,
在拋物線上,且
,則有( 。
A.
B.![]()
C.
D.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com