【題目】在平面直角坐標(biāo)系
中,已知拋物線
:
,過拋物線焦點(diǎn)
且與
軸垂直的直線與拋物線相交于
、
兩點(diǎn),且
的周長為
.
(1)求拋物線
的方程;
(2)若直線
過焦點(diǎn)
且與拋物線
相交于
、
兩點(diǎn),過點(diǎn)
、
分別作拋物線
的切線
、
,切線
與
相交于點(diǎn)
,求:
的值.
【答案】(1)
;(2)0.
【解析】
(1)先求得A,B兩點(diǎn)坐標(biāo),利用計(jì)算
的周長可得p,進(jìn)而求得拋物線方程;
(2)利用導(dǎo)數(shù)的幾何意義求得切線
與
的方程,聯(lián)立直線與拋物線方程,利用韋達(dá)定理及
與
的交點(diǎn)P,可得
,再利用焦半徑公式求得
,可得結(jié)果.
(1)由題意知焦點(diǎn)
的坐標(biāo)為
,將
代入拋物線
的方程可求得點(diǎn)
、
的坐標(biāo)分別為
、
,
有
,
,可得
的周長為
,有
,得
.
故拋物線
的方程為
.
(2)由(1)知拋物線
的方程可化為
,求導(dǎo)可得
.
設(shè)點(diǎn)
、
的坐標(biāo)分別為
、
.
設(shè)直線
的方程為
(直線
的斜率顯然存在).
聯(lián)立方程
消去
整理為:
,可得
.
有
,
.
可得直線
的方程為
,整理為
.
同理直線
的方程為
.
聯(lián)立方程
,解得
,則點(diǎn)
的坐標(biāo)為
.
由拋物線的幾何性質(zhì)知
,
,
.
有
.
∴
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)“文化強(qiáng)國建設(shè)”號(hào)召,并增加學(xué)生們對古典文學(xué)的學(xué)習(xí)興趣,雅禮中學(xué)計(jì)劃建設(shè)一個(gè)古典文學(xué)熏陶室.為了解學(xué)生閱讀需求,隨機(jī)抽取200名學(xué)生做統(tǒng)計(jì)調(diào)查.統(tǒng)計(jì)顯示,男生喜歡閱讀古典文學(xué)的有64人,不喜歡的有56人;女生喜歡閱讀古典文學(xué)的有36人,不喜歡的有44人.
(1)能否在犯錯(cuò)誤的概率不超過0.25的前提下認(rèn)為喜歡閱讀古典文學(xué)與性別有關(guān)系?
(2)為引導(dǎo)學(xué)生積極參與閱讀古典文學(xué)書籍,語文教研組計(jì)劃牽頭舉辦雅禮教育集團(tuán)古典文學(xué)閱讀交流會(huì).經(jīng)過綜合考慮與對比,語文教研組已經(jīng)從這200人中篩選出了5名男生代表和4名女生代表,其中有3名男生代表和2名女生代表喜歡古典文學(xué).現(xiàn)從這9名代表中任選3名男生代表和2名女生代表參加交流會(huì),記
為參加交流會(huì)的5人中喜歡古典文學(xué)的人數(shù),求
的分布列及數(shù)學(xué)期望
.
附:
,其中
.
參考數(shù)據(jù):
| 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 |
| 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
,其中
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)若對任意
,任意
,不等式
恒成立時(shí)最大的
記為
,當(dāng)
時(shí),
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左右焦點(diǎn)分別為
,其焦距為
,點(diǎn)
在橢圓
上,
,直線
的斜率為
(
為半焦距)·
(1)求橢圓
的方程;
(2)設(shè)圓
的切線
交橢圓
于
兩點(diǎn)(
為坐標(biāo)原點(diǎn)),求證:
;
(3)在(2)的條件下,求
的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點(diǎn)
在正視圖上的對應(yīng)點(diǎn)為
,圓柱表面上的點(diǎn)
在左視圖上的對應(yīng)點(diǎn)為
,則在此圓柱側(cè)面上,從
到
的路徑中,最短路徑的長度為( )
![]()
A.
B.
C.
D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4一4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,曲線
的參數(shù)方程為
參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線
是圓心的極坐標(biāo)為(
)且經(jīng)過極點(diǎn)的圓
(1)求曲線C1的極坐標(biāo)方程和C2的普通方程;
(2)已知射線
分別與曲線C1,C2交于點(diǎn)A,B(點(diǎn)B異于坐標(biāo)原點(diǎn)O),求線段AB的長
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,過曲線
外的一點(diǎn)
(其中
,
為銳角)作平行于
的直線
與曲線分別交于
.
(Ⅰ) 寫出曲線
和直線
的普通方程(以極點(diǎn)為原點(diǎn),極軸為
軸的正半軸建系);
(Ⅱ)若
成等比數(shù)列,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年4月10日21時(shí)整,全球六地(上海和臺(tái)北、布魯塞爾、圣地亞哥、東京和華盛頓同時(shí)召開新聞發(fā)布會(huì),宣布人類首次利用虛擬射電望遠(yuǎn)鏡,成功捕獲世界上首張黑洞圖像,公布的照片展示了一個(gè)中心為黑色的明亮環(huán)狀結(jié)構(gòu),看上去有點(diǎn)像個(gè)橙色的甜甜圈,其黑色部分是黑洞投下的“陰影”,明亮部分是繞黑洞高速旋轉(zhuǎn)的吸積盤.某同學(xué)作了一張黑洞示意圖,如圖所示,由兩個(gè)同心圓和半個(gè)同心圓環(huán)構(gòu)成圓及圓環(huán)的半徑從內(nèi)到外依次為2,3,4,5個(gè)單位在圖中隨機(jī)任取一點(diǎn),則該點(diǎn)取自陰影的概率為( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓錐的頂點(diǎn)為A,高和底面的半徑相等,BE是底面圓的一條直徑,點(diǎn)D為底面圓周上的一點(diǎn),且∠ABD=60°,則異面直線AB與DE所成角的正弦值為( )
A.
B.
C.
D.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com