欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

2.已知|$\overrightarrow{a}$|=|$\overrightarrow$|=1,且($\overrightarrow{a}$+2$\overrightarrow$)•($\overrightarrow{a}$$-\overrightarrow$)=-2,則向量$\overrightarrow{a}$與$\overrightarrow$的夾角為π.

分析 首先由已知等式求出向量$\overrightarrow{a}$與$\overrightarrow$的數(shù)量積,利用平面向量的數(shù)量積公式可得.

解答 解:由已知||$\overrightarrow{a}$|=|$\overrightarrow$|=1,且($\overrightarrow{a}$+2$\overrightarrow$)•($\overrightarrow{a}$$-\overrightarrow$)=-2,
則${\overrightarrow{a}}^{2}+\overrightarrow{a}•\overrightarrow-2{\overrightarrow}^{2}=-2$,所以$\overrightarrow{a}•\overrightarrow$=-1,
所以向量$\overrightarrow{a}$與$\overrightarrow$的夾角的余弦值為$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}||\overrightarrow|}$=-1,
所以向量$\overrightarrow{a}$與$\overrightarrow$的夾角為π.
故答案為:π

點評 本題考查了平面向量的數(shù)量積公式的運用;屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+x+a,x<0}\\{-\frac{1}{x},x>0}\end{array}\right.$若函數(shù)f(x)的圖象在點A,B處的切線重合,則實數(shù)a的取值范圍是( 。
A.(2,+∞)B.(-∞,$\frac{1}{4}$)C.(-2,$\frac{1}{4}$)D.(-∞,-2)∪($\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在直角坐標系xOy中,以O為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcosθ=a(a>0),Q為l上一點,以OQ為邊作等邊三角形OPQ,且O、P、Q三點按逆時針方向排列.
(Ⅰ)當點Q在l上運動時,求點P運動軌跡的直角坐標方程;
(Ⅱ)若曲線C:x2+y2=a2,經過伸縮變換$\left\{\begin{array}{l}{x′=2x}\\{y′=y}\end{array}\right.$得到曲線C′,試判斷點P的軌跡與曲線C′是否有交點,如果有,請求出交點的直角坐標,沒有則說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.如圖,桌面上放置了紅、黃、藍三個不同顏色的杯子,杯子口朝上,我們做蒙眼睛翻杯子(杯口朝上的翻為杯口朝下,杯口朝下的翻為杯口朝上)的游戲.
(1)隨機翻一個杯子,求翻到黃色杯子的概率;
(2)隨機翻一個杯子,接著從這三個杯子中再隨機翻一個,請利用樹狀圖求出此時恰好有一個杯口朝上的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.把曲線$\left\{{\begin{array}{l}{x=sinθ+cosθ}\\{y=1+sin2θ}\end{array}}\right.$(θ為參數(shù))化為普通方程為y=x2,x∈[-$\sqrt{2}$,$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.有下列關系:①人的年齡與他(她)擁有的財富之間的關系; ②曲線上的點與該點的坐標之間的關系; ③蘋果的產量與氣候之間的關系;④森林中的同一種樹木,其橫斷面直徑與高度之間的關系,其中是相關關系的為①③④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)=ex-ax2-x-1(a∈R)恰有兩個極值點x1,x2(其中x1<x2),且f(x2)=0,則a的取值范圍是(  )
A.$(-∞,\frac{1}{2})$B.(0,1)C.$(0,\frac{1}{2})$D.$(\frac{1}{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在平面直角坐標系中,直線L的參數(shù)方程為$\left\{\begin{array}{l}{x=3-tcos\frac{3π}{4}}\\{y=\sqrt{5}+tsin\frac{3π}{4}}\end{array}\right.$(t為參數(shù)).在以原點 O為極點,x軸正半軸為極軸的極坐標中,圓C的方程為$ρ=2\sqrt{5}sinθ$.
(Ⅰ)寫出直線L的傾斜角α和圓C的直角坐標方程;
(Ⅱ)若點 P坐標為$({3,\sqrt{5}})$,圓C與直線L交于 A,B兩點,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.某學校對學生的考試成績作抽樣調查,得到成績的頻率分布直方圖如圖所示,記[90,100]為A組,[80,90)為B組,[70,80)為C組,其中A組與[40,50)對應的數(shù)值相同,B組與[60,70)對應的數(shù)值相同,[70,80)對應的數(shù)值被污損,記為x.
(1)求x的值,并估計眾數(shù)、中位數(shù)和平均數(shù);
(2)用分層抽樣的辦法從[90,100],[80,90),[70,80)三個分數(shù)段的學生中抽出6人參加比賽,從中任選3人為正選隊員,求正選隊員中有A組學生的概率.

查看答案和解析>>

同步練習冊答案